Share this
Benchmarking Postgres on AWS 4,000 PIOPs EBS instances
by Pythian Marketing on May 8, 2013 12:00:00 AM
Introduction
Disk I/O is frequently the performance bottleneck with relational databases. With AWS recently releasing 4,000 PIOPs EBS volumes, I wanted to do some benchmarking with pgbench and PostgreSQL 9.2. Prior to this release the maximum available I/O capacity was 2,000 IOPs per volume. EBS IOPs are read and written in 16Kb chunks with their performance limited by both the I/O capacity of the EBS volumes and the network bandwidth between an EC2 instance and the EBS network. My goal isn't to provide a PostgreSQL tuning guide, an EC2 tuning guide, or a database deathmatch complete with graphs; I'll just be displaying what kind of performance is available out-of-the-box without substantive tuning. In other words, this is an exploratory benchmark not a comparative benchmark. I would have liked to compare the performance of 4,000 PIOPs EBS volumes with 2,000 PIOPs EBS volumes, but I ran out of time so that will have to wait for a following post.Setup
Region
I conducted my testing in AWS' São Paulo region. One benefit of testing in sa-east-1 is that spot prices for larger instances are (anecdotally) more stable than in us-east. Unfortunately, sa-east-1 doesn't have any cluster compute (CC) instances available. CC instances have twice the bandwidth to the EBS network than non-CC EC2 instances. That additional bandwidth allows you to construct larger software RAID volumes. My cocktail napkin calculations show that it should be possible to reach 50,000 PIOPs on an EBS-backed CC instance without much of a problem.EC2 instances
I tested with three EC2 instances: an m1.large from which to run pgbench, an m2.2xlarge with four EBS volumes, and an m1.xlarge with one EBS volume. All EBS volumes are 400GB with 4,000 provisioned IOPs. The m1.large instance was an on-demand instance; the other instances — the pgbench target database servers — were all spot instances with a maximum bid of $0.05. (In one case our first spot instance was terminated, and we had to rebuild it). Some brief testing showed that having an external machine driving the benchmark was critical for the best results.Operating System
All EC2 instances are running Ubuntu 12.10. A custom sysctl.conf tuned the Sys V shared memory as well as set swappiness to zero and memory overcommit to two.kernel.shmmax = 13355443200
kernel.shmall = 13355443200
vm.swappiness = 0
vm.overcommit_memory = 2
Packages The following packages were installed via apt-get:
- htop
- xfsprogs
- debian-keyring
- mdadm
- postgresql-9.2
- postgresql-contrib-9.2
deb https://apt.postgresql.org/pub/repos/apt/ squeeze-pgdg main
was placed in /etc/apt/sources.list.d and the following commands were run:
gpg --keyserver pgp.mit.edu --recv-keys ACCC4CF8
gpg --armor --export ACCC4CF8 | apt-key add -
apt-get update
RAID and Filesystems
For the one volume instance, I simply created an XFS file system and mounted it on /mnt/benchmark.mkdir /mnt/benchmark
mkfs.xfs /dev/svdf
mount -t xfs /dev/svdf /mnt/benchmark
echo "/dev/svdf /mnt/benchmark xfs defaults 1 2" >> /etc/fstab
For the four volume instance it was only slightly more involved. mkfs.xfs analyzes the underlying disk objects and determines the appropriate values for stride and width. Below are the commands for assembling a four volume mdadm software RAID array that is mounted on boot (assuming you've attached the EBS volumes to your EC2 instance). Running dpkg-reconfigure rebuilds the initrd image.
mkdir /mnt/benchmark
mdadm --create /dev/md0 --level=0 --raid-volumes=4 /dev/svdf /dev/svdg /dev/svdh /dev/svdi
mdadm --detail --scan >> /etc/mdadm/mdadm.conf
mkfs.xfs /dev/md0
echo "/dev/md0 /mnt/benchmark xfs defaults 1 2" >> /etc/fstab
dpkg-reconfigure mdadm
Benchmarking
pgbench is a utlity included in the postgresql-contrib-9.2 package. It approximates the TPC-B benchmark and can be looked at as a database stress test whose output is measured in transactions per second. It involves a significant amount of disk I/O with transactions that run for relatively short amounts of time. vacuumdb was run before each pgbench iteration. For each database server pgbench was run mimicking 16 clients, 32 clients, 48 clients, 64 clients, 80 clients, and 96 clients. At each of those client values, pgbench iterated ten times in steps of 100 from 100 to 1,000 transactions per client. It's important to realize that pgbench's stress test is not typical of a web application workload; most consumer facing web applications could achieve much higher rates than those mentioned here. The only pgbench results against AWS/EBS volumes that I'm-aware-of/is-quickly-googleable is from early 2012 and, at its best, achieves rates 50% slower than the lowest rates found here. I drove the benchmark using a very small, very unfancy bash script. An example of the pgbench commandline would be:pgbench -h $DBHOST -j4 -r -Mextended -n -c48 -t600 -U$DBUSER
m1.xlarge with single 4,000 PIOPs volume
The maximum transaction volume for this isntance was when running below 48 concurrent clients and under 500 transactions per client. While the transaction throuput never dropped precipitously at any point, loads outside of that range exhibited varying performance. Even at its worst, though, this instance handled between 600-700 transactions/second.m2.2xlarge with four 4,000 PIOPs volumes
I was impressed; at no point did the benchmark stress this instance — the tps rate was between 1700-1900 in most situations with peaks up to 2200 transactions per second. If I was asked to blindly size a "big" PostgreSQL database server running on AWS this is probably where I would start. It's not so large that you have operational issues like worrying about MTBFs for ten volume RAID arrays or trying to snapshot 4TB of disk space, but it is large enough to absorb a substantial amount of traffic.Graphs and Tabular Data
single-4K-volume tps
The spread of transactions/second irrespective of number of clients.Data grouped by number of concurrent clients with each bar representing an increase in 100 transactions per second ranging from 100 to 1,000.
Progression of tps by individual level of concurrency. The x-axis tick marks measure single pgbench runs from 100 transactions per client to 1,000 transactions per client.
Raw tabular data
| txns/client | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 |
| clients | ||||||||||
| 16 | 1455 | 1283 | 1183 | 653 | 1197 | 533 | 631 | 1009 | 923 | 648 |
| 32 | 1500 | 1242 | 1232 | 757 | 747 | 630 | 1067 | 665 | 688 | 709 |
| 48 | 281 | 864 | 899 | 705 | 1029 | 749 | 736 | 593 | 766 | 641 |
| 64 | 944 | 1281 | 704 | 1010 | 739 | 596 | 778 | 662 | 820 | 612 |
| 80 | 815 | 893 | 1055 | 809 | 597 | 801 | 684 | 708 | 736 | 663 |
| 96 | 939 | 889 | 774 | 772 | 798 | 682 | 725 | 662 | 776 | 708 |
four-4,000-PIOPs-volumes tps
Again, a box plot of the data with a y-axis of transactions/second.
Grouped by number of concurrent clients between 100 and 1,000 transactions per client.
TPS by number of concurrent clients. The x-axis ticks mark pgbench runs progressing from 100 transactions per client to 1,000 transactions per client.
Tabular data m2.2xlarge with four 4,000 PIOPs EBS volumes
| txns/client | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 |
| clients | ||||||||||
| 16 | 1487 | 1617 | 1877 | 1415 | 1388 | 1882 | 1897 | 1771 | 1267 | 1785 |
| 32 | 1804 | 2083 | 2160 | 1791 | 1259 | 1997 | 2230 | 1501 | 1717 | 1918 |
| 48 | 1810 | 2152 | 1296 | 1951 | 2117 | 1775 | 1709 | 1803 | 1817 | 1847 |
| 64 | 1810 | 1580 | 1568 | 2056 | 1811 | 1784 | 1849 | 1909 | 1942 | 1658 |
| 80 | 1802 | 2044 | 1467 | 2142 | 1645 | 1896 | 1933 | 1740 | 1821 | 1851 |
| 96 | 1595 | 1403 | 2047 | 1731 | 1783 | 1859 | 1708 | 1896 | 1751 | 1801 |
Share this
- Technical Track (816)
- Oracle (488)
- Database (229)
- MySQL (144)
- Cloud (133)
- Microsoft SQL Server (124)
- Open Source (84)
- Google Cloud (82)
- Microsoft Azure (67)
- Amazon Web Services (AWS) (63)
- Big Data (50)
- Cassandra (44)
- Google Cloud Platform (44)
- DevOps (38)
- Linux (28)
- Pythian (27)
- PostgreSQL (26)
- Podcasts (25)
- Site Reliability Engineering (23)
- Performance (22)
- Docker (21)
- Oracle E-Business Suite (21)
- DBA (18)
- Oracle Cloud Infrastructure (OCI) (18)
- MongoDB (17)
- Security (17)
- Hadoop (16)
- BigQuery (15)
- Amazon RDS (14)
- Automation (14)
- Exadata (14)
- Oracleebs (14)
- Snowflake (14)
- Ansible (13)
- Oracle Database (13)
- Oracle Exadata (13)
- ASM (12)
- Data (12)
- LLM (12)
- Artificial Intelligence (AI) (11)
- GenAI (11)
- Kubernetes (11)
- Machine Learning (11)
- Advanced Analytics (10)
- Datascape Podcast (10)
- Oracle Applications (10)
- Replication (10)
- Authentication, SSO and MFA (8)
- ChatGPT (8)
- Cloud Migration (8)
- Infrastructure (8)
- Monitoring (8)
- Percona (8)
- Analytics (7)
- Apache (7)
- Apache Cassandra (7)
- Data Governance (7)
- High Availability (7)
- Mariadb (7)
- Microsoft Azure SQL Database (7)
- Myrocks (7)
- Oracle EBS (7)
- Python (7)
- Rman (7)
- SAP (7)
- Series (7)
- AWR (6)
- Airflow (6)
- Apache Beam (6)
- Data Guard (6)
- Innodb (6)
- Migration (6)
- Oracle Enterprise Manager (OEM) (6)
- Orchestrator (6)
- RocksDB (6)
- Azure Synapse Analytics (5)
- Covid-19 (5)
- Data Enablement (5)
- Disaster Recovery (5)
- Microsoft (5)
- Performance Tuning (5)
- Scala (5)
- Serverless (5)
- Cloud Security (4)
- Cloud Spanner (4)
- CockroachDB (4)
- Data Management (4)
- Data Pipeline (4)
- Data Security (4)
- Data Strategy (4)
- Data Visualization (4)
- Databases (4)
- Dataflow (4)
- Generative AI (4)
- Google (4)
- Google BigQuery (4)
- Oracle Autonomous Database (Adb) (4)
- Oracle Cloud (4)
- Oracle Enterprise Manager (4)
- Redhat (4)
- Ssl (4)
- Windows (4)
- Xtrabackup (4)
- Amazon Relational Database Service (Rds) (3)
- Apex (3)
- Cloud Database (3)
- Cloud FinOps (3)
- Data Analytics (3)
- Data Migrations (3)
- Database Migration (3)
- Digital Transformation (3)
- ERP (3)
- Google Chrome (3)
- Google Cloud Sql (3)
- Google Workspace (3)
- Heterogeneous Database Migration (3)
- Oracle Live Sql (3)
- Oracle Rac (3)
- Perl (3)
- Power Bi (3)
- Prometheus (3)
- Remote Teams (3)
- Slob (3)
- Tensorflow (3)
- Terraform (3)
- Amazon Data Migration Service (2)
- Amazon Ec2 (2)
- Anisble (2)
- Apache Flink (2)
- Apache Kafka (2)
- Apexexport (2)
- Ashdump (2)
- Aurora (2)
- Azure Data Factory (2)
- Cloud Armor (2)
- Cloud Data Fusion (2)
- Cloud Hosting (2)
- Cloud Infrastructure (2)
- Cloud Shell (2)
- Cloud Sql (2)
- Conferences (2)
- Cosmos Db (2)
- Cosmosdb (2)
- Cost Management (2)
- Data Discovery (2)
- Data Integration (2)
- Data Quality (2)
- Data Streaming (2)
- Database Administrator (2)
- Database Consulting (2)
- Database Monitoring (2)
- Database Performance (2)
- Database Troubleshooting (2)
- Dataguard (2)
- Dataops (2)
- Enterprise Data Platform (EDP) (2)
- Events (2)
- Fusion Middleware (2)
- Gemini (2)
- Graphite (2)
- Infrastructure As Code (2)
- Innodb Cluster (2)
- Innodb File Structure (2)
- Innodb Group Replication (2)
- Liquibase (2)
- NLP (2)
- Nosql (2)
- Oracle Data Guard (2)
- Oracle Datase (2)
- Oracle Flashback (2)
- Oracle Forms (2)
- Oracle Installation (2)
- Oracle Io Testing (2)
- Podcast (2)
- Rdbms (2)
- Redshift (2)
- Remote DBA (2)
- Remote Sre (2)
- S3 (2)
- Single Sign-On (2)
- Webinars (2)
- X5 (2)
- AI (1)
- Actifio (1)
- Adop (1)
- Advanced Data Services (1)
- Afd (1)
- Alloydb (1)
- Amazon (1)
- Amazon Aurora Backtrack (1)
- Amazon Efs (1)
- Amazon Redshift (1)
- Amazon S3 (1)
- Amazon Sagemaker (1)
- Amazon Vpc Flow Logs (1)
- Analysis (1)
- Analytical Models (1)
- Anthos (1)
- Application Migration (1)
- Ash (1)
- Asmlib (1)
- Atp (1)
- Autonomous (1)
- Awr Data Mining (1)
- Awr Mining (1)
- Azure Data Lake (1)
- Azure Data Lake Analytics (1)
- Azure Data Lake Store (1)
- Azure Data Migration Service (1)
- Azure OpenAI (1)
- Azure Sql Data Warehouse (1)
- Batches In Cassandra (1)
- Business Insights (1)
- Business Intelligence (1)
- Chown (1)
- Chrome Security (1)
- Cloud Browser (1)
- Cloud Build (1)
- Cloud Consulting (1)
- Cloud Cost Optimization (1)
- Cloud Data Warehouse (1)
- Cloud Database Management (1)
- Cloud Dataproc (1)
- Cloud Foundry (1)
- Cloud Networking (1)
- Cloud SQL Replica (1)
- Cloud Scheduler (1)
- Cloud Services (1)
- Cloud Strategies (1)
- Compliance (1)
- Conversational AI (1)
- Cyber Security (1)
- Data Analysis (1)
- Data Analytics Platform (1)
- Data Box (1)
- Data Classification (1)
- Data Cleansing (1)
- Data Encryption (1)
- Data Engineering (1)
- Data Estate (1)
- Data Insights (1)
- Data Integrity (1)
- Data Leader (1)
- Data Lifecycle Management (1)
- Data Lineage (1)
- Data Masking (1)
- Data Mesh (1)
- Data Migration (1)
- Data Migration Assistant (1)
- Data Migration Service (1)
- Data Mining (1)
- Data Monetization (1)
- Data Policy (1)
- Data Profiling (1)
- Data Protection (1)
- Data Retention (1)
- Data Safe (1)
- Data Sheets (1)
- Data Summit (1)
- Data Vault (1)
- Data Warehouse (1)
- Database Consultant (1)
- Database Link (1)
- Database Management (1)
- Database Migrations (1)
- Database Modernization (1)
- Database Provisioning (1)
- Database Provisioning Failed (1)
- Database Replication (1)
- Database Schemas (1)
- Database Upgrade (1)
- Databricks (1)
- Datascape 59 (1)
- DeepSeek (1)
- Docker-Composer (1)
- Duet AI (1)
- Edp (1)
- Etl (1)
- Gcp Compute (1)
- Gcp-Spanner (1)
- Global Analytics (1)
- Google Analytics (1)
- Google Cloud Architecture Framework (1)
- Google Cloud Data Services (1)
- Google Cloud Partner (1)
- Google Cloud Spanner (1)
- Google Cloud VMware Engine (1)
- Google Compute Engine (1)
- Google Dataflow (1)
- Google Datalab (1)
- Google Grab And Go (1)
- Graph Algorithms (1)
- Graph Inferences (1)
- Graph Theory (1)
- GraphQL (1)
- Health Check (1)
- Healthcheck (1)
- Information (1)
- Infrastructure As A Code (1)
- Innobackupex (1)
- Innodb Concurrency (1)
- Innodb Flush Method (1)
- It Industry (1)
- Kubeflow (1)
- LMSYS Chatbot Arena (1)
- Linux Host Monitoring (1)
- Linux Storage Appliance (1)
- Looker (1)
- MMLU (1)
- Managed Services (1)
- Migrate (1)
- Neo4J (1)
- Newsroom (1)
- Nifi (1)
- OPEX (1)
- Odbcs (1)
- Odbs (1)
- On-Premises (1)
- Open Source Database (1)
- Ora-01852 (1)
- Ora-7445 (1)
- Oracle Cursor (1)
- Oracle Database@Google Cloud (1)
- Oracle Exadata Smart Scan (1)
- Oracle Licensing (1)
- Oracle Linux Virtualization Manager (1)
- Oracle Oda (1)
- Oracle Openworld (1)
- Oracle Parallelism (1)
- Oracle RMAN (1)
- Oracle Rdbms (1)
- Oracle Real Application Clusters (1)
- Oracle Reports (1)
- Oracle Security (1)
- Perfomrance (1)
- Performance Schema (1)
- Policy (1)
- Prompt Engineering (1)
- Public Cloud (1)
- Pythian News (1)
- Rdb (1)
- Replication Error (1)
- Retail (1)
- SAP HANA Cloud (1)
- Securing Sql Server (1)
- Serverless Computing (1)
- Sso (1)
- Tenserflow (1)
- Teradata (1)
- Vertex AI (1)
- Videos (1)
- Workspace Security (1)
- Xbstream (1)
- August 2025 (1)
- July 2025 (3)
- June 2025 (1)
- May 2025 (3)
- March 2025 (2)
- February 2025 (1)
- January 2025 (2)
- December 2024 (1)
- October 2024 (2)
- September 2024 (7)
- August 2024 (4)
- July 2024 (2)
- June 2024 (6)
- May 2024 (3)
- April 2024 (2)
- February 2024 (1)
- January 2024 (11)
- December 2023 (10)
- November 2023 (9)
- October 2023 (11)
- September 2023 (9)
- August 2023 (6)
- July 2023 (2)
- June 2023 (13)
- May 2023 (4)
- April 2023 (6)
- March 2023 (10)
- February 2023 (6)
- January 2023 (5)
- December 2022 (10)
- November 2022 (10)
- October 2022 (10)
- September 2022 (13)
- August 2022 (16)
- July 2022 (12)
- June 2022 (13)
- May 2022 (11)
- April 2022 (4)
- March 2022 (5)
- February 2022 (4)
- January 2022 (14)
- December 2021 (16)
- November 2021 (11)
- October 2021 (6)
- September 2021 (11)
- August 2021 (6)
- July 2021 (9)
- June 2021 (4)
- May 2021 (8)
- April 2021 (16)
- March 2021 (16)
- February 2021 (6)
- January 2021 (12)
- December 2020 (12)
- November 2020 (17)
- October 2020 (11)
- September 2020 (10)
- August 2020 (11)
- July 2020 (13)
- June 2020 (6)
- May 2020 (9)
- April 2020 (18)
- March 2020 (21)
- February 2020 (13)
- January 2020 (15)
- December 2019 (10)
- November 2019 (11)
- October 2019 (12)
- September 2019 (16)
- August 2019 (15)
- July 2019 (10)
- June 2019 (16)
- May 2019 (20)
- April 2019 (21)
- March 2019 (14)
- February 2019 (18)
- January 2019 (18)
- December 2018 (5)
- November 2018 (16)
- October 2018 (12)
- September 2018 (20)
- August 2018 (27)
- July 2018 (31)
- June 2018 (34)
- May 2018 (28)
- April 2018 (27)
- March 2018 (17)
- February 2018 (8)
- January 2018 (20)
- December 2017 (14)
- November 2017 (4)
- October 2017 (1)
- September 2017 (3)
- August 2017 (5)
- July 2017 (4)
- June 2017 (2)
- May 2017 (7)
- April 2017 (7)
- March 2017 (8)
- February 2017 (8)
- January 2017 (5)
- December 2016 (3)
- November 2016 (4)
- October 2016 (8)
- September 2016 (9)
- August 2016 (10)
- July 2016 (9)
- June 2016 (8)
- May 2016 (13)
- April 2016 (16)
- March 2016 (13)
- February 2016 (11)
- January 2016 (6)
- December 2015 (11)
- November 2015 (11)
- October 2015 (5)
- September 2015 (16)
- August 2015 (4)
- July 2015 (1)
- June 2015 (3)
- May 2015 (6)
- April 2015 (5)
- March 2015 (5)
- February 2015 (4)
- January 2015 (3)
- December 2014 (7)
- October 2014 (4)
- September 2014 (6)
- August 2014 (6)
- July 2014 (16)
- June 2014 (7)
- May 2014 (6)
- April 2014 (5)
- March 2014 (4)
- February 2014 (10)
- January 2014 (6)
- December 2013 (8)
- November 2013 (12)
- October 2013 (9)
- September 2013 (6)
- August 2013 (7)
- July 2013 (9)
- June 2013 (7)
- May 2013 (7)
- April 2013 (4)
- March 2013 (7)
- February 2013 (4)
- January 2013 (4)
- December 2012 (6)
- November 2012 (8)
- October 2012 (9)
- September 2012 (3)
- August 2012 (5)
- July 2012 (5)
- June 2012 (7)
- May 2012 (11)
- April 2012 (1)
- March 2012 (8)
- February 2012 (1)
- January 2012 (6)
- December 2011 (8)
- November 2011 (5)
- October 2011 (9)
- September 2011 (6)
- August 2011 (4)
- July 2011 (1)
- June 2011 (1)
- May 2011 (5)
- April 2011 (2)
- February 2011 (2)
- January 2011 (2)
- December 2010 (1)
- November 2010 (7)
- October 2010 (3)
- September 2010 (8)
- August 2010 (2)
- July 2010 (4)
- June 2010 (7)
- May 2010 (2)
- April 2010 (1)
- March 2010 (3)
- February 2010 (3)
- January 2010 (2)
- November 2009 (6)
- October 2009 (6)
- August 2009 (3)
- July 2009 (3)
- June 2009 (3)
- May 2009 (2)
- April 2009 (8)
- March 2009 (6)
- February 2009 (4)
- January 2009 (3)
- November 2008 (3)
- October 2008 (7)
- September 2008 (6)
- August 2008 (9)
- July 2008 (9)
- June 2008 (9)
- May 2008 (9)
- April 2008 (8)
- March 2008 (4)
- February 2008 (3)
- January 2008 (3)
- December 2007 (2)
- November 2007 (7)
- October 2007 (1)
- August 2007 (4)
- July 2007 (3)
- June 2007 (8)
- May 2007 (4)
- April 2007 (2)
- March 2007 (2)
- February 2007 (5)
- January 2007 (8)
- December 2006 (1)
- November 2006 (3)
- October 2006 (4)
- September 2006 (3)
- July 2006 (1)
- May 2006 (2)
- April 2006 (1)
- July 2005 (1)
No Comments Yet
Let us know what you think