Share this
Cassandra use cases: when to use and when not to use cassandra
by John Schulz on Mar 21, 2018 12:00:00 AM
Introduction
I have a database server that has these features:
- High available by design.
- Can be globally distributed.
- Allows applications to write to any node anywhere, anytime.
- Linearly scalable by simply adding more nodes to the cluster.
- Automatic workload and data balancing.
- A query language that looks a lot like SQL.
With the list of features above, why don’t we all use Cassandra for all our database needs? This is the hype I hear at conferences and from some commercial entities pushing their version of Cassandra. Unfortunately, some people believe it. Especially now when many users of proprietary database technologies like Oracle and SQL Server are looking to get out of massive license fees. The (apparent) low cost of open-source in combination with the list of features above, make Cassandra very attractive to many corporate CTOs and CFOs. What they are missing is the core features they assume a database has, but are missing from Cassandra.
I am a database architect and consultant. I have been working with Cassandra since version 0.7. came out in 2010.
I like, and often promote Cassandra to my customers—for the right use cases.
Unfortunately, I often find myself being asked to help after the choice was already made and it turned out to be a poor use case for Cassandra, or they made some poor choices in their data modeling for Cassandra.
In this blog post I am going to discuss some of the pitfalls to avoid, suggest a few good use cases for Cassandra and offer just a bit of data modeling advice.
Where Cassandra users go wrong
Cassandra projects tend to fail as a result of one or more of these reasons:
- The wrong Cassandra features were used.
- The use case was totally wrong for Cassandra.
- The data modeling was not done properly.
Wrong Features
To be honest, it doesn’t help that Cassandra has a bunch of features that probably shouldn’t be there. Features leading one to believe you can do some of the things everyone expects a relational database to do:
- Secondary indexes: They have their uses but not as an alternative access path into a table.
- Counters: They work most of the time, but they are very expensive and should not be used very often.
- Light weight transactions: They are not transactions nor are they light weight.
- Batches: Sending a bunch of operations to the server at one time is usually good, saves network time, right? Well in the case of Cassandra not so much.
- Materialized views: I got taken in on this one. It looked like it made so much sense. Because of course it does. But then you look at how it has to work, and you go…Oh no!
- CQL: Looks like SQL which confuses people into thinking it is SQL.
Using any of the above features the way you would expect them to work in a traditional database is certain to result in serious performance problems and in some cases a broken database.
Get your data model right
Another major mistake developers make in building a Cassandra database is making a poor choice for partition keys.
Cassandra is distributed. This means you need to have a way to distribute the data across multiple nodes. Cassandra does this by hashing a part of every table’s primary key called the partition key and assigning the hashed values (called tokens) to specific nodes in the cluster. It is important to consider the following rules when choosing you partition keys:
- There should be enough partition key values to spread the data for each table evenly across all the nodes in the cluster.
- Keep data you want to retrieve in single read within a single partition
- Don’t let partitions get too big. Cassandra can handle large partitions >100 Megabytes but its not very efficient. Besides, if you are getting partitions that large, it’s unlikely your data distribution will be even.
- Ideally all partitions would be roughly the same size. It almost never happens.
Typical real-world partition keys are user id, device id, account number etc. To manage partition size, often a time modifier like year and month or year are added to the partition key.
If you get this wrong, you will suffer greatly. I should probably point out that this is true in one way or another of all distributed databases. The key word here is distributed.

Wrong Use Cases for Cassandra
If you have a database where you depend on any of the following things– Cassandra is wrong for your use case. Please don’t even consider Cassandra. You will be unhappy.
- Tables have multiple access paths. Example: lots of secondary indexes.
- The application depends on identifying rows with sequential values. MySQL autoincrement or Oracle sequences.
- Cassandra does not do ACID. LSD, Sulphuric or any other kind. If you think you need it go elsewhere. Many times people think they do need it when they don’t.
- Aggregates: Cassandra does not support aggregates, if you need to do a lot of them, think another database.
- Joins: You many be able to data model yourself out of this one, but take care.
- Locks: Honestly, Cassandra does not support locking. There is a good reason for this. Don’t try to implement them yourself. I have seen the end result of people trying to do locks using Cassandra and the results were not pretty.
- Updates: Cassandra is very good at writes, okay with reads. Updates and deletes are implemented as special cases of writes and that has consequences that are not immediately obvious.
- Transactions: CQL has no begin/commit transaction syntax. If you think you need it then Cassandra is a poor choice for you. Don’t try to simulate it. The results won’t be pretty.
If you are thinking about using Cassandra with any of the above requirements, you likely don’t have an appropriate use case. Please think about using another database technology that might better meet your needs.
When you should think about using Cassandra
Every database server ever designed was built to meet specific design criteria. Those design criteria define the use cases where the database will fit well and the use cases where it will not.
Cassandra’s design criteria are the following:
- Distributed: Runs on more than one server node.
- Scale linearly: By adding nodes, not more hardware on existing nodes.
- Work globally: A cluster may be geographically distributed.
- Favor writes over reads: Writes are an order of magnitude faster than reads.
- Democratic peer to peer architecture: No master/slave.
- Favor partition tolerance and availability over consistency: Eventually consistent (see the CAP theorem: https://en.wikipedia.org/wiki/CAP_theorem.)
- Support fast targeted reads by primary key: Focus on primary key reads alternative paths are very sub-optimal.
- Support data with a defined lifetime: All data in a Cassandra database has a defined lifetime no need to delete it after the lifetime expires the data goes away.
There is nothing in the list about ACID, support for relational operations or aggregates. At this point you might well say, “what is it going to be good for?” ACID, relational and aggregates are critical to the use of all databases. No ACID means no Atomic and without Atomic operations, how do you make sure anything ever happens correctly–meaning consistently. The answer is you don’t. If you were thinking of using Cassandra to keep track of account balances at a bank, you probably should look at alternatives.
Ideal Cassandra Use Cases
It turns out that Cassandra is really very good for some applications.
The ideal Cassandra application has the following characteristics:
- Writes exceed reads by a large margin.
- Data is rarely updated and when updates are made they are idempotent.
- Read Access is by a known primary key.
- Data can be partitioned via a key that allows the database to be spread evenly across multiple nodes.
- There is no need for joins or aggregates.
Some of my favorite examples of good use cases for Cassandra are:
- Transaction logging: Purchases, test scores, movies watched and movie latest location.
- Storing time series data (as long as you do your own aggregates).
- Tracking pretty much anything including order status, packages etc.
- Storing health tracker data.
- Weather service history.
- Internet of things status and event history.
- Telematics: IOT for cars and trucks.
- Email envelopes—not the contents.
Conclusion
Frequently, executives and developers look at the feature set of a technology without understanding the underlying design criteria and the methods used to implement those features. When dealing with distributed databases, it’s also very important to recognize how the data and workload will be distributed. Without understanding the design criteria, implementation and distribution plan, any attempt to use a distributed database like Cassandra is going to fail. Usually in a spectacular fashion.
Whether you’re considering an open source or commercial Cassandra deployment, planning to implement it, or already have it in production, Pythian’s certified experts can work with your team to ensure the success of your project at every phase. Learn more about Pythian Services for Cassandra.
Cassandra Database Consulting
Ready to handle massive data volumes with zero downtime?
Share this
- Technical Track (816)
- Oracle (488)
- Database (229)
- MySQL (144)
- Cloud (133)
- Microsoft SQL Server (124)
- Open Source (84)
- Google Cloud (82)
- Microsoft Azure (67)
- Amazon Web Services (AWS) (63)
- Big Data (50)
- Cassandra (44)
- Google Cloud Platform (44)
- DevOps (38)
- Linux (28)
- Pythian (27)
- PostgreSQL (26)
- Podcasts (25)
- Site Reliability Engineering (23)
- Performance (22)
- Docker (21)
- Oracle E-Business Suite (21)
- DBA (18)
- Oracle Cloud Infrastructure (OCI) (18)
- MongoDB (17)
- Security (17)
- Hadoop (16)
- BigQuery (15)
- Amazon RDS (14)
- Automation (14)
- Exadata (14)
- Oracleebs (14)
- Snowflake (14)
- Ansible (13)
- Oracle Database (13)
- Oracle Exadata (13)
- ASM (12)
- Data (12)
- LLM (12)
- Artificial Intelligence (AI) (11)
- GenAI (11)
- Kubernetes (11)
- Machine Learning (11)
- Advanced Analytics (10)
- Datascape Podcast (10)
- Oracle Applications (10)
- Replication (10)
- Authentication, SSO and MFA (8)
- ChatGPT (8)
- Cloud Migration (8)
- Infrastructure (8)
- Monitoring (8)
- Percona (8)
- Analytics (7)
- Apache (7)
- Apache Cassandra (7)
- Data Governance (7)
- High Availability (7)
- Mariadb (7)
- Microsoft Azure SQL Database (7)
- Myrocks (7)
- Oracle EBS (7)
- Python (7)
- Rman (7)
- SAP (7)
- Series (7)
- AWR (6)
- Airflow (6)
- Apache Beam (6)
- Data Guard (6)
- Innodb (6)
- Migration (6)
- Oracle Enterprise Manager (OEM) (6)
- Orchestrator (6)
- RocksDB (6)
- Azure Synapse Analytics (5)
- Covid-19 (5)
- Data Enablement (5)
- Disaster Recovery (5)
- Microsoft (5)
- Performance Tuning (5)
- Scala (5)
- Serverless (5)
- Cloud Security (4)
- Cloud Spanner (4)
- CockroachDB (4)
- Data Management (4)
- Data Pipeline (4)
- Data Security (4)
- Data Strategy (4)
- Data Visualization (4)
- Databases (4)
- Dataflow (4)
- Generative AI (4)
- Google (4)
- Google BigQuery (4)
- Oracle Autonomous Database (Adb) (4)
- Oracle Cloud (4)
- Oracle Enterprise Manager (4)
- Redhat (4)
- Ssl (4)
- Windows (4)
- Xtrabackup (4)
- Amazon Relational Database Service (Rds) (3)
- Apex (3)
- Cloud Database (3)
- Cloud FinOps (3)
- Data Analytics (3)
- Data Migrations (3)
- Database Migration (3)
- Digital Transformation (3)
- ERP (3)
- Google Chrome (3)
- Google Cloud Sql (3)
- Google Workspace (3)
- Heterogeneous Database Migration (3)
- Oracle Live Sql (3)
- Oracle Rac (3)
- Perl (3)
- Power Bi (3)
- Prometheus (3)
- Remote Teams (3)
- Slob (3)
- Tensorflow (3)
- Terraform (3)
- Amazon Data Migration Service (2)
- Amazon Ec2 (2)
- Anisble (2)
- Apache Flink (2)
- Apache Kafka (2)
- Apexexport (2)
- Ashdump (2)
- Aurora (2)
- Azure Data Factory (2)
- Cloud Armor (2)
- Cloud Data Fusion (2)
- Cloud Hosting (2)
- Cloud Infrastructure (2)
- Cloud Shell (2)
- Cloud Sql (2)
- Conferences (2)
- Cosmos Db (2)
- Cosmosdb (2)
- Cost Management (2)
- Data Discovery (2)
- Data Integration (2)
- Data Quality (2)
- Data Streaming (2)
- Database Administrator (2)
- Database Consulting (2)
- Database Monitoring (2)
- Database Performance (2)
- Database Troubleshooting (2)
- Dataguard (2)
- Dataops (2)
- Enterprise Data Platform (EDP) (2)
- Events (2)
- Fusion Middleware (2)
- Gemini (2)
- Graphite (2)
- Infrastructure As Code (2)
- Innodb Cluster (2)
- Innodb File Structure (2)
- Innodb Group Replication (2)
- Liquibase (2)
- NLP (2)
- Nosql (2)
- Oracle Data Guard (2)
- Oracle Datase (2)
- Oracle Flashback (2)
- Oracle Forms (2)
- Oracle Installation (2)
- Oracle Io Testing (2)
- Podcast (2)
- Rdbms (2)
- Redshift (2)
- Remote DBA (2)
- Remote Sre (2)
- S3 (2)
- Single Sign-On (2)
- Webinars (2)
- X5 (2)
- AI (1)
- Actifio (1)
- Adop (1)
- Advanced Data Services (1)
- Afd (1)
- Alloydb (1)
- Amazon (1)
- Amazon Aurora Backtrack (1)
- Amazon Efs (1)
- Amazon Redshift (1)
- Amazon S3 (1)
- Amazon Sagemaker (1)
- Amazon Vpc Flow Logs (1)
- Analysis (1)
- Analytical Models (1)
- Anthos (1)
- Application Migration (1)
- Ash (1)
- Asmlib (1)
- Atp (1)
- Autonomous (1)
- Awr Data Mining (1)
- Awr Mining (1)
- Azure Data Lake (1)
- Azure Data Lake Analytics (1)
- Azure Data Lake Store (1)
- Azure Data Migration Service (1)
- Azure OpenAI (1)
- Azure Sql Data Warehouse (1)
- Batches In Cassandra (1)
- Business Insights (1)
- Business Intelligence (1)
- Chown (1)
- Chrome Security (1)
- Cloud Browser (1)
- Cloud Build (1)
- Cloud Consulting (1)
- Cloud Cost Optimization (1)
- Cloud Data Warehouse (1)
- Cloud Database Management (1)
- Cloud Dataproc (1)
- Cloud Foundry (1)
- Cloud Networking (1)
- Cloud SQL Replica (1)
- Cloud Scheduler (1)
- Cloud Services (1)
- Cloud Strategies (1)
- Compliance (1)
- Conversational AI (1)
- Cyber Security (1)
- Data Analysis (1)
- Data Analytics Platform (1)
- Data Box (1)
- Data Classification (1)
- Data Cleansing (1)
- Data Encryption (1)
- Data Engineering (1)
- Data Estate (1)
- Data Insights (1)
- Data Integrity (1)
- Data Leader (1)
- Data Lifecycle Management (1)
- Data Lineage (1)
- Data Masking (1)
- Data Mesh (1)
- Data Migration (1)
- Data Migration Assistant (1)
- Data Migration Service (1)
- Data Mining (1)
- Data Monetization (1)
- Data Policy (1)
- Data Profiling (1)
- Data Protection (1)
- Data Retention (1)
- Data Safe (1)
- Data Sheets (1)
- Data Summit (1)
- Data Vault (1)
- Data Warehouse (1)
- Database Consultant (1)
- Database Link (1)
- Database Management (1)
- Database Migrations (1)
- Database Modernization (1)
- Database Provisioning (1)
- Database Provisioning Failed (1)
- Database Replication (1)
- Database Schemas (1)
- Database Upgrade (1)
- Databricks (1)
- Datascape 59 (1)
- DeepSeek (1)
- Docker-Composer (1)
- Duet AI (1)
- Edp (1)
- Etl (1)
- Gcp Compute (1)
- Gcp-Spanner (1)
- Global Analytics (1)
- Google Analytics (1)
- Google Cloud Architecture Framework (1)
- Google Cloud Data Services (1)
- Google Cloud Partner (1)
- Google Cloud Spanner (1)
- Google Cloud VMware Engine (1)
- Google Compute Engine (1)
- Google Dataflow (1)
- Google Datalab (1)
- Google Grab And Go (1)
- Graph Algorithms (1)
- Graph Inferences (1)
- Graph Theory (1)
- GraphQL (1)
- Health Check (1)
- Healthcheck (1)
- Information (1)
- Infrastructure As A Code (1)
- Innobackupex (1)
- Innodb Concurrency (1)
- Innodb Flush Method (1)
- It Industry (1)
- Kubeflow (1)
- LMSYS Chatbot Arena (1)
- Linux Host Monitoring (1)
- Linux Storage Appliance (1)
- Looker (1)
- MMLU (1)
- Managed Services (1)
- Migrate (1)
- Neo4J (1)
- Newsroom (1)
- Nifi (1)
- OPEX (1)
- Odbcs (1)
- Odbs (1)
- On-Premises (1)
- Open Source Database (1)
- Ora-01852 (1)
- Ora-7445 (1)
- Oracle Cursor (1)
- Oracle Database@Google Cloud (1)
- Oracle Exadata Smart Scan (1)
- Oracle Licensing (1)
- Oracle Linux Virtualization Manager (1)
- Oracle Oda (1)
- Oracle Openworld (1)
- Oracle Parallelism (1)
- Oracle RMAN (1)
- Oracle Rdbms (1)
- Oracle Real Application Clusters (1)
- Oracle Reports (1)
- Oracle Security (1)
- Perfomrance (1)
- Performance Schema (1)
- Policy (1)
- Prompt Engineering (1)
- Public Cloud (1)
- Pythian News (1)
- Rdb (1)
- Replication Error (1)
- Retail (1)
- SAP HANA Cloud (1)
- Securing Sql Server (1)
- Serverless Computing (1)
- Sso (1)
- Tenserflow (1)
- Teradata (1)
- Vertex AI (1)
- Videos (1)
- Workspace Security (1)
- Xbstream (1)
- August 2025 (1)
- July 2025 (3)
- June 2025 (1)
- May 2025 (3)
- March 2025 (2)
- February 2025 (1)
- January 2025 (2)
- December 2024 (1)
- October 2024 (2)
- September 2024 (7)
- August 2024 (4)
- July 2024 (2)
- June 2024 (6)
- May 2024 (3)
- April 2024 (2)
- February 2024 (1)
- January 2024 (11)
- December 2023 (10)
- November 2023 (9)
- October 2023 (11)
- September 2023 (9)
- August 2023 (6)
- July 2023 (2)
- June 2023 (13)
- May 2023 (4)
- April 2023 (6)
- March 2023 (10)
- February 2023 (6)
- January 2023 (5)
- December 2022 (10)
- November 2022 (10)
- October 2022 (10)
- September 2022 (13)
- August 2022 (16)
- July 2022 (12)
- June 2022 (13)
- May 2022 (11)
- April 2022 (4)
- March 2022 (5)
- February 2022 (4)
- January 2022 (14)
- December 2021 (16)
- November 2021 (11)
- October 2021 (6)
- September 2021 (11)
- August 2021 (6)
- July 2021 (9)
- June 2021 (4)
- May 2021 (8)
- April 2021 (16)
- March 2021 (16)
- February 2021 (6)
- January 2021 (12)
- December 2020 (12)
- November 2020 (17)
- October 2020 (11)
- September 2020 (10)
- August 2020 (11)
- July 2020 (13)
- June 2020 (6)
- May 2020 (9)
- April 2020 (18)
- March 2020 (21)
- February 2020 (13)
- January 2020 (15)
- December 2019 (10)
- November 2019 (11)
- October 2019 (12)
- September 2019 (16)
- August 2019 (15)
- July 2019 (10)
- June 2019 (16)
- May 2019 (20)
- April 2019 (21)
- March 2019 (14)
- February 2019 (18)
- January 2019 (18)
- December 2018 (5)
- November 2018 (16)
- October 2018 (12)
- September 2018 (20)
- August 2018 (27)
- July 2018 (31)
- June 2018 (34)
- May 2018 (28)
- April 2018 (27)
- March 2018 (17)
- February 2018 (8)
- January 2018 (20)
- December 2017 (14)
- November 2017 (4)
- October 2017 (1)
- September 2017 (3)
- August 2017 (5)
- July 2017 (4)
- June 2017 (2)
- May 2017 (7)
- April 2017 (7)
- March 2017 (8)
- February 2017 (8)
- January 2017 (5)
- December 2016 (3)
- November 2016 (4)
- October 2016 (8)
- September 2016 (9)
- August 2016 (10)
- July 2016 (9)
- June 2016 (8)
- May 2016 (13)
- April 2016 (16)
- March 2016 (13)
- February 2016 (11)
- January 2016 (6)
- December 2015 (11)
- November 2015 (11)
- October 2015 (5)
- September 2015 (16)
- August 2015 (4)
- July 2015 (1)
- June 2015 (3)
- May 2015 (6)
- April 2015 (5)
- March 2015 (5)
- February 2015 (4)
- January 2015 (3)
- December 2014 (7)
- October 2014 (4)
- September 2014 (6)
- August 2014 (6)
- July 2014 (16)
- June 2014 (7)
- May 2014 (6)
- April 2014 (5)
- March 2014 (4)
- February 2014 (10)
- January 2014 (6)
- December 2013 (8)
- November 2013 (12)
- October 2013 (9)
- September 2013 (6)
- August 2013 (7)
- July 2013 (9)
- June 2013 (7)
- May 2013 (7)
- April 2013 (4)
- March 2013 (7)
- February 2013 (4)
- January 2013 (4)
- December 2012 (6)
- November 2012 (8)
- October 2012 (9)
- September 2012 (3)
- August 2012 (5)
- July 2012 (5)
- June 2012 (7)
- May 2012 (11)
- April 2012 (1)
- March 2012 (8)
- February 2012 (1)
- January 2012 (6)
- December 2011 (8)
- November 2011 (5)
- October 2011 (9)
- September 2011 (6)
- August 2011 (4)
- July 2011 (1)
- June 2011 (1)
- May 2011 (5)
- April 2011 (2)
- February 2011 (2)
- January 2011 (2)
- December 2010 (1)
- November 2010 (7)
- October 2010 (3)
- September 2010 (8)
- August 2010 (2)
- July 2010 (4)
- June 2010 (7)
- May 2010 (2)
- April 2010 (1)
- March 2010 (3)
- February 2010 (3)
- January 2010 (2)
- November 2009 (6)
- October 2009 (6)
- August 2009 (3)
- July 2009 (3)
- June 2009 (3)
- May 2009 (2)
- April 2009 (8)
- March 2009 (6)
- February 2009 (4)
- January 2009 (3)
- November 2008 (3)
- October 2008 (7)
- September 2008 (6)
- August 2008 (9)
- July 2008 (9)
- June 2008 (9)
- May 2008 (9)
- April 2008 (8)
- March 2008 (4)
- February 2008 (3)
- January 2008 (3)
- December 2007 (2)
- November 2007 (7)
- October 2007 (1)
- August 2007 (4)
- July 2007 (3)
- June 2007 (8)
- May 2007 (4)
- April 2007 (2)
- March 2007 (2)
- February 2007 (5)
- January 2007 (8)
- December 2006 (1)
- November 2006 (3)
- October 2006 (4)
- September 2006 (3)
- July 2006 (1)
- May 2006 (2)
- April 2006 (1)
- July 2005 (1)
No Comments Yet
Let us know what you think