Share this
Dipping Your Toes Into Building an Analytics Platform on Google Cloud Platform
by Pythian Marketing on Sep 17, 2020 12:00:00 AM
“We have many disparate data sources and we’re having a hard time getting a global view of all our data across our organization.”
“Our data is currently all in <enter data warehouse name here> and we want to migrate it to Google Cloud.”
“We’d like to lift-and-shift our data from warehouse X into BigQuery.”
These are a few of the statements that I hear week in and week out (and sometimes daily) when speaking with (potential) clients. Time after time I see that there are some considerable misconceptions about how architecting a data analytics environment on Google Cloud Platform (GCP) (and cloud platforms in general) differs from the more traditional approach. Traditionally it was more along the lines of dumping everything into an enterprise data warehouse and then hammering it with some ETL tools to clean/transform/process your data in order to prep it for analytics workloads. And so, for some the concept of a data pipeline is a foreign one, and for others, the idea that Google BigQuery isn’t just another generic data warehouse isn’t plausible…
To clarify, this isn’t necessarily restricted to GCP, and can actually be applied to cloud-based data analytics platforms, generally. The reason why I’m focusing on GCP is two-fold.
First off, I’m a fan of Google’s big data service offerings and all the value that they provide. Second, I see GCP as being one of the pioneering platforms when it comes to ease, fluidity, and speed of deployments, especially with respect to big data architectures.
So, while BigQuery is the golden child, with all the price and performance benefits that it provides, we can’t forget about the rich ecosystem of managed data services that surround it when architecting data platforms on GCP. And this is where I really see Google shining in the big data space.
Where to begin
As a solutions architect, I’m also a compulsive planner, and that means I always like to see some form of structure in the solutions that we put together; that being said, the “because that’s what worked” answer is hardly ever a satisfactory one. I’m an advocate of layered architectures that usually map to corresponding service assignments. Likewise, when approaching the data analytics platform problem, the idea that the data warehouse is the workhorse and everything gets dumped in there, is a very scary one; it’s a literal translation of putting all your eggs in one basket.

A Layered Architecture
Layers, layers, layers…
Going back to basics, the definition of every system is defined by its functionality and in relating its inputs to certain (desired) outputs. Generally speaking, if we can build a system that gives us the intended output when assigned the corresponding input(s), then we have succeeded in achieving the required functionality. But is that enough? Certainly not!
Functionality: What happens when we start adding more/different inputs? Do we still get the correct/intended outputs?
Modularity: What happens when we need to fix or upgrade a sub-component of this system? Do we just throw it out and build something new from scratch?
Scalability: What happens when demand for the system increases? Can it scale to meet this increased demand? Or do we dump it and build a more performant version of it?
Extensibility: What about when we need to introduce a new form of functionality or a new feature? Is it modular and pluggable enough that it can be augmented with new features? Or is it so monolithic that building a new system altogether is the easier route?
These are all some of the basic questions that an engineer would usually ask themselves before designing any system.
So how do we apply this to the data analytics platform problem?
A data analytics platform running on a cloud platform is a system in and of itself. This means that it has inputs and outputs with the expectation that certain inputs would map to certain outputs. However, is this system only performing a single task under the hood? No, it’s not! (if that were true I would sleep a lot better at night)
To clarify, there are a set of common functional features & characteristics that we aim to achieve when designing such a platform. These features & characteristics can be:
- Ingestion
- Storage
- Processing
- Analytics
- Exploration
- Visualization
Each of these characteristics plays a significant role in order to achieve a platform that is generally functional to provide data analytics to an end-user when fed with data from a number of sources.
Ok, so now what?
Now we can take the concept of a layered architecture, and apply it to this multi-feature definition of a data analytics platform, and formulate a feature-oriented architecture that functional, modular, scalable and extensible. In order to do so, we can assign a layer to each specific feature. Then we define the relationships between the different layers based on how these features would interact with one another.
For example, it goes without saying that data ingestion will be the first point of contact for incoming raw data from external sources. Next data will need to land in a store where it can be explored and processed. Finally, the processed data will need to be exposed to the visualization tool that the end-user will use to interface with the overall system.
N.B. I realize this is written in an oversimplified manner, however, it’s just to provide context to the overarching topic. An actual design process is significantly more complicated and takes a considerable amount of other factors into consideration.
What we come out with is a layered platform architecture, arranging the different layers as follows.

Enter Google Cloud Platform
As I was saying earlier — before I went off on a tangent on developing a layered big data platform design in a cloud environment — Google Cloud provides a rich ecosystem of managed and serverless big data services, including BigQuery, that align very well with this layered design approach. So much that if you take the above diagram and select the corresponding services that Google offers in each one of these roles you would probably come up with something like this.

So there definitely are other options and combinations of services, and every organization will have its own requirements, and its specificities, and even limitations that may have repercussions on specific service selection. Not to mention that I didn’t even get into the data timeliness aspect at all (i.e. batching, micro-batching, and streaming) and the effects of that on the choice of services above as well as their integration requirements. What’s important to note though is that even in spite of the different timeliness options, the layered architecture above is still applicable and can serve the required purpose it was set out to achieve.
The added-value of Google Cloud
The best part of all of this is that each one of the services identified above is either a managed service, where Google takes care of automating the underlying infrastructure and deployment (i.e. Datalab and Dataproc), or a purely serverless one, where Google fully manages the whole service for you and provides just a (somewhat pretty) UI and an API to interact with it (i.e. Storage, BigQuery and Data Studio); there’s also Cloud Dataflow and Cloud Dataprep that sit somewhere in between those two categories, but you get the point.
All in all and as you can see, Google makes it very convenient to plug-and-play (now that’s a term I haven’t heard or used in a couple of decades) services that align well with good architectural design practices. This enables any organization to build out an enterprise-grade and production-ready data analytics platform that can support its needs with an extremely quick time-to-value.
N.B. I didn’t assign a data ingestion service on purpose, as there are a number of different options that can be used, all depending on the nature of the data sources being ingested. One of my favorites is Apache NiFi, simply due to its versatility and the simple fact that it’s built primarily as a data ingestion tool. However to-date there is no managed Apache NiFi service on GCP, nor on any other cloud platform as far as I am aware. Another great candidate for data ingestion is Google App Engine if you prefer more of a PaaS deployment.
Key takeaways — TL;DR
- For some, approaching the concept of an enterprise data analytics platform may appear as a bit of a paradigm shift from the traditional method of dumping all your eggs into one basket.
- Building a modern data platform should not be an ad-hoc activity; take your time, define your features, develop a layered feature-oriented architecture, define the corresponding functional role(s) for each layer (per the original feature requirements), and select the technologies that best align with the role of each layer.
- Google provides a rich product suite of managed and serverless big data and analytics services that make it easy and accessible for anyone to leverage and integrate highly performant components when building data analytics platform on GCP.
Learn more about Pythian’s Cloud solutions for Google Cloud Platform and check out our Analytics as a Service solution (A fully-managed end-to-end service that brings your multi-source, multi-format data together in the cloud).

Share this
- Technical Track (967)
- Oracle (410)
- MySQL (140)
- Cloud (128)
- Microsoft SQL Server (117)
- Open Source (90)
- Google Cloud (81)
- Microsoft Azure (63)
- Amazon Web Services (AWS) (58)
- Big Data (52)
- Google Cloud Platform (46)
- Cassandra (44)
- DevOps (41)
- Pythian (33)
- Linux (30)
- Database (26)
- Performance (25)
- Podcasts (25)
- Site Reliability Engineering (25)
- PostgreSQL (24)
- Oracle E-Business Suite (23)
- Oracle Database (22)
- Docker (21)
- DBA (20)
- Security (20)
- Exadata (18)
- MongoDB (18)
- Oracle Cloud Infrastructure (OCI) (18)
- Oracle Exadata (18)
- Automation (17)
- Hadoop (16)
- Oracleebs (16)
- Amazon RDS (15)
- Ansible (15)
- Snowflake (15)
- ASM (13)
- Artificial Intelligence (AI) (13)
- BigQuery (13)
- Replication (13)
- Advanced Analytics (12)
- Data (12)
- GenAI (12)
- Kubernetes (12)
- LLM (12)
- Authentication, SSO and MFA (11)
- Cloud Migration (11)
- Machine Learning (11)
- Rman (11)
- Datascape Podcast (10)
- Monitoring (10)
- Apache Cassandra (9)
- ChatGPT (9)
- Data Guard (9)
- Infrastructure (9)
- Oracle Applications (9)
- Python (9)
- Series (9)
- AWR (8)
- High Availability (8)
- Oracle EBS (8)
- Oracle Enterprise Manager (OEM) (8)
- Percona (8)
- Apache Beam (7)
- Data Governance (7)
- Innodb (7)
- Microsoft Azure SQL Database (7)
- Migration (7)
- Myrocks (7)
- Performance Tuning (7)
- Data Enablement (6)
- Data Visualization (6)
- Database Performance (6)
- Oracle Enterprise Manager (6)
- Orchestrator (6)
- RocksDB (6)
- Serverless (6)
- Azure Data Factory (5)
- Azure Synapse Analytics (5)
- Covid-19 (5)
- Disaster Recovery (5)
- Generative AI (5)
- Google BigQuery (5)
- Mariadb (5)
- Microsoft (5)
- Scala (5)
- Windows (5)
- Xtrabackup (5)
- Airflow (4)
- Analytics (4)
- Apex (4)
- Cloud Security (4)
- Cloud Spanner (4)
- CockroachDB (4)
- Data Management (4)
- Data Pipeline (4)
- Data Security (4)
- Data Strategy (4)
- Database Administrator (4)
- Database Management (4)
- Database Migration (4)
- Dataflow (4)
- Fusion Middleware (4)
- Google (4)
- Oracle Autonomous Database (Adb) (4)
- Oracle Cloud (4)
- Prometheus (4)
- Redhat (4)
- Slob (4)
- Ssl (4)
- Terraform (4)
- Amazon Relational Database Service (Rds) (3)
- Apache Kafka (3)
- Apexexport (3)
- Aurora (3)
- Business Intelligence (3)
- Cloud Armor (3)
- Cloud Database (3)
- Cloud FinOps (3)
- Cosmos Db (3)
- Data Analytics (3)
- Data Integration (3)
- Database Monitoring (3)
- Database Troubleshooting (3)
- Database Upgrade (3)
- Databases (3)
- Dataops (3)
- Digital Transformation (3)
- ERP (3)
- Google Chrome (3)
- Google Cloud Sql (3)
- Google Workspace (3)
- Graphite (3)
- Heterogeneous Database Migration (3)
- Liquibase (3)
- Oracle Data Guard (3)
- Oracle Live Sql (3)
- Oracle Rac (3)
- Perl (3)
- Rdbms (3)
- Remote Teams (3)
- S3 (3)
- SAP (3)
- Tensorflow (3)
- Adf (2)
- Adop (2)
- Amazon Data Migration Service (2)
- Amazon Ec2 (2)
- Amazon S3 (2)
- Apache Flink (2)
- Ashdump (2)
- Atp (2)
- Autonomous (2)
- Awr Data Mining (2)
- Cloud Cost Optimization (2)
- Cloud Data Fusion (2)
- Cloud Hosting (2)
- Cloud Infrastructure (2)
- Cloud Shell (2)
- Cloud Sql (2)
- Conferences (2)
- Cosmosdb (2)
- Cost Management (2)
- Cyber Security (2)
- Data Analysis (2)
- Data Discovery (2)
- Data Engineering (2)
- Data Migration (2)
- Data Modeling (2)
- Data Quality (2)
- Data Streaming (2)
- Data Warehouse (2)
- Database Consulting (2)
- Database Migrations (2)
- Dataguard (2)
- Docker-Composer (2)
- Enterprise Data Platform (EDP) (2)
- Etl (2)
- Events (2)
- Gemini (2)
- Health Check (2)
- Infrastructure As Code (2)
- Innodb Cluster (2)
- Innodb File Structure (2)
- Innodb Group Replication (2)
- NLP (2)
- Neo4J (2)
- Nosql (2)
- Open Source Database (2)
- Oracle Datase (2)
- Oracle Extended Manager (Oem) (2)
- Oracle Flashback (2)
- Oracle Forms (2)
- Oracle Installation (2)
- Oracle Io Testing (2)
- Podcast (2)
- Power Bi (2)
- Redshift (2)
- Remote DBA (2)
- Remote Sre (2)
- SAP HANA Cloud (2)
- Single Sign-On (2)
- Webinars (2)
- X5 (2)
- Actifio (1)
- Adf Custom Email (1)
- Adrci (1)
- Advanced Data Services (1)
- Afd (1)
- Ahf (1)
- Alloydb (1)
- Amazon (1)
- Amazon Athena (1)
- Amazon Aurora Backtrack (1)
- Amazon Efs (1)
- Amazon Redshift (1)
- Amazon Sagemaker (1)
- Amazon Vpc Flow Logs (1)
- Analysis (1)
- Analytical Models (1)
- Anisble (1)
- Anthos (1)
- Apache (1)
- Apache Nifi (1)
- Apache Spark (1)
- Application Migration (1)
- Ash (1)
- Asmlib (1)
- Atlas CLI (1)
- Awr Mining (1)
- Aws Lake Formation (1)
- Azure Data Lake (1)
- Azure Data Lake Analytics (1)
- Azure Data Lake Store (1)
- Azure Data Migration Service (1)
- Azure OpenAI (1)
- Azure Sql Data Warehouse (1)
- Batches In Cassandra (1)
- Business Insights (1)
- Chown (1)
- Chrome Security (1)
- Cloud Browser (1)
- Cloud Build (1)
- Cloud Consulting (1)
- Cloud Data Warehouse (1)
- Cloud Database Management (1)
- Cloud Dataproc (1)
- Cloud Foundry (1)
- Cloud Manager (1)
- Cloud Networking (1)
- Cloud SQL Replica (1)
- Cloud Scheduler (1)
- Cloud Services (1)
- Cloud Strategies (1)
- Compliance (1)
- Conversational AI (1)
- DAX (1)
- Data Analytics Platform (1)
- Data Box (1)
- Data Classification (1)
- Data Cleansing (1)
- Data Encryption (1)
- Data Estate (1)
- Data Flow Management (1)
- Data Insights (1)
- Data Integrity (1)
- Data Lake (1)
- Data Leader (1)
- Data Lifecycle Management (1)
- Data Lineage (1)
- Data Masking (1)
- Data Mesh (1)
- Data Migration Assistant (1)
- Data Migration Service (1)
- Data Mining (1)
- Data Monetization (1)
- Data Policy (1)
- Data Profiling (1)
- Data Protection (1)
- Data Retention (1)
- Data Safe (1)
- Data Sheets (1)
- Data Summit (1)
- Data Vault (1)
- Data Warehouse Modernization (1)
- Database Auditing (1)
- Database Consultant (1)
- Database Link (1)
- Database Modernization (1)
- Database Provisioning (1)
- Database Provisioning Failed (1)
- Database Replication (1)
- Database Scaling (1)
- Database Schemas (1)
- Database Security (1)
- Databricks (1)
- Datascape 59 (1)
- DeepSeek (1)
- Duet AI (1)
- Edp (1)
- Gcp Compute (1)
- Gcp-Spanner (1)
- Global Analytics (1)
- Google Analytics (1)
- Google Cloud Architecture Framework (1)
- Google Cloud Data Services (1)
- Google Cloud Partner (1)
- Google Cloud Spanner (1)
- Google Cloud VMware Engine (1)
- Google Compute Engine (1)
- Google Dataflow (1)
- Google Datalab (1)
- Google Grab And Go (1)
- Graph Algorithms (1)
- Graph Databases (1)
- Graph Inferences (1)
- Graph Theory (1)
- GraphQL (1)
- Healthcheck (1)
- Information (1)
- Infrastructure As A Code (1)
- Innobackupex (1)
- Innodb Concurrency (1)
- Innodb Flush Method (1)
- It Industry (1)
- Kubeflow (1)
- LMSYS Chatbot Arena (1)
- Linux Host Monitoring (1)
- Linux Storage Appliance (1)
- Looker (1)
- MMLU (1)
- Managed Services (1)
- Migrate (1)
- Migrating Ssis Catalog (1)
- Migration Checklist (1)
- MongoDB Atlas (1)
- MongoDB Compass (1)
- Newsroom (1)
- Nifi (1)
- OPEX (1)
- ORAPKI (1)
- Odbcs (1)
- Odbs (1)
- On-Premises (1)
- Ora-01852 (1)
- Ora-7445 (1)
- Oracle Cursor (1)
- Oracle Database Appliance (1)
- Oracle Database Se2 (1)
- Oracle Database Standard Edition 2 (1)
- Oracle Database Upgrade (1)
- Oracle Database@Google Cloud (1)
- Oracle Exadata Smart Scan (1)
- Oracle Licensing (1)
- Oracle Linux Virtualization Manager (1)
- Oracle Oda (1)
- Oracle Openworld (1)
- Oracle Parallelism (1)
- Oracle RMAN (1)
- Oracle Rdbms (1)
- Oracle Real Application Clusters (1)
- Oracle Reports (1)
- Oracle Security (1)
- Oracle Wallet (1)
- Perfomrance (1)
- Performance Schema (1)
- Policy (1)
- Prompt Engineering (1)
- Public Cloud (1)
- Pythian News (1)
- Rdb (1)
- Replication Compatibility (1)
- Replication Error (1)
- Retail (1)
- Scaling Ir (1)
- Securing Sql Server (1)
- Security Compliance (1)
- Serverless Computing (1)
- Sso (1)
- Tenserflow (1)
- Teradata (1)
- Vertex AI (1)
- Vertica (1)
- Videos (1)
- Workspace Security (1)
- Xbstream (1)
- May 2025 (1)
- March 2025 (2)
- February 2025 (1)
- January 2025 (2)
- December 2024 (1)
- October 2024 (2)
- September 2024 (7)
- August 2024 (4)
- July 2024 (2)
- June 2024 (6)
- May 2024 (3)
- April 2024 (2)
- February 2024 (1)
- January 2024 (11)
- December 2023 (10)
- November 2023 (11)
- October 2023 (10)
- September 2023 (8)
- August 2023 (6)
- July 2023 (2)
- June 2023 (13)
- May 2023 (4)
- April 2023 (6)
- March 2023 (10)
- February 2023 (6)
- January 2023 (5)
- December 2022 (10)
- November 2022 (10)
- October 2022 (10)
- September 2022 (13)
- August 2022 (16)
- July 2022 (12)
- June 2022 (13)
- May 2022 (11)
- April 2022 (4)
- March 2022 (5)
- February 2022 (4)
- January 2022 (14)
- December 2021 (16)
- November 2021 (11)
- October 2021 (6)
- September 2021 (11)
- August 2021 (6)
- July 2021 (9)
- June 2021 (4)
- May 2021 (8)
- April 2021 (16)
- March 2021 (16)
- February 2021 (6)
- January 2021 (12)
- December 2020 (12)
- November 2020 (17)
- October 2020 (11)
- September 2020 (10)
- August 2020 (11)
- July 2020 (13)
- June 2020 (6)
- May 2020 (9)
- April 2020 (18)
- March 2020 (21)
- February 2020 (13)
- January 2020 (15)
- December 2019 (10)
- November 2019 (11)
- October 2019 (12)
- September 2019 (16)
- August 2019 (15)
- July 2019 (10)
- June 2019 (16)
- May 2019 (20)
- April 2019 (21)
- March 2019 (14)
- February 2019 (18)
- January 2019 (18)
- December 2018 (5)
- November 2018 (16)
- October 2018 (12)
- September 2018 (20)
- August 2018 (27)
- July 2018 (31)
- June 2018 (34)
- May 2018 (28)
- April 2018 (27)
- March 2018 (17)
- February 2018 (8)
- January 2018 (20)
- December 2017 (14)
- November 2017 (4)
- October 2017 (1)
- September 2017 (3)
- August 2017 (5)
- July 2017 (4)
- June 2017 (2)
- May 2017 (7)
- April 2017 (7)
- March 2017 (8)
- February 2017 (8)
- January 2017 (5)
- December 2016 (3)
- November 2016 (4)
- October 2016 (8)
- September 2016 (9)
- August 2016 (10)
- July 2016 (9)
- June 2016 (8)
- May 2016 (13)
- April 2016 (16)
- March 2016 (13)
- February 2016 (11)
- January 2016 (6)
- December 2015 (11)
- November 2015 (11)
- October 2015 (5)
- September 2015 (16)
- August 2015 (4)
- July 2015 (1)
- June 2015 (3)
- May 2015 (6)
- April 2015 (5)
- March 2015 (5)
- February 2015 (4)
- January 2015 (3)
- December 2014 (7)
- October 2014 (4)
- September 2014 (6)
- August 2014 (6)
- July 2014 (16)
- June 2014 (7)
- May 2014 (6)
- April 2014 (5)
- March 2014 (4)
- February 2014 (10)
- January 2014 (6)
- December 2013 (8)
- November 2013 (12)
- October 2013 (9)
- September 2013 (6)
- August 2013 (7)
- July 2013 (9)
- June 2013 (7)
- May 2013 (7)
- April 2013 (4)
- March 2013 (7)
- February 2013 (4)
- January 2013 (4)
- December 2012 (6)
- November 2012 (8)
- October 2012 (9)
- September 2012 (3)
- August 2012 (5)
- July 2012 (5)
- June 2012 (7)
- May 2012 (11)
- April 2012 (1)
- March 2012 (8)
- February 2012 (1)
- January 2012 (6)
- December 2011 (8)
- November 2011 (5)
- October 2011 (9)
- September 2011 (6)
- August 2011 (4)
- July 2011 (1)
- June 2011 (1)
- May 2011 (5)
- April 2011 (2)
- February 2011 (2)
- January 2011 (2)
- December 2010 (1)
- November 2010 (7)
- October 2010 (3)
- September 2010 (8)
- August 2010 (2)
- July 2010 (4)
- June 2010 (7)
- May 2010 (2)
- April 2010 (1)
- March 2010 (3)
- February 2010 (3)
- January 2010 (2)
- November 2009 (6)
- October 2009 (6)
- August 2009 (3)
- July 2009 (3)
- June 2009 (3)
- May 2009 (2)
- April 2009 (8)
- March 2009 (6)
- February 2009 (4)
- January 2009 (3)
- November 2008 (3)
- October 2008 (7)
- September 2008 (6)
- August 2008 (9)
- July 2008 (9)
- June 2008 (9)
- May 2008 (9)
- April 2008 (8)
- March 2008 (4)
- February 2008 (3)
- January 2008 (3)
- December 2007 (2)
- November 2007 (7)
- October 2007 (1)
- August 2007 (4)
- July 2007 (3)
- June 2007 (8)
- May 2007 (4)
- April 2007 (2)
- March 2007 (2)
- February 2007 (5)
- January 2007 (8)
- December 2006 (1)
- November 2006 (3)
- October 2006 (4)
- September 2006 (3)
- July 2006 (1)
- May 2006 (2)
- April 2006 (1)
- July 2005 (1)
No Comments Yet
Let us know what you think