Share this
Orchestrating dbt Pipelines With Google Cloud: Part 1
by Enrique Lopez de Lara on Nov 18, 2021 12:00:00 AM
In my previous post I showed you how to use dbt to expedite data preparation tasks on Google BigQuery. This time, I’ll show you how to integrate those dbt pipelines into workflows that load, validate and transform data.
We’ll use two serverless, pay-per-use products to simplify the solution and reduce costs: Google Cloud Run and Google Workflows. Cloud Run is a scalable computer environment for containerized applications. Applications must provide HTTP endpoints so that operations can be invoked via HTTP requests. On the other hand, Cloud Workflows is an orchestrator for HTTP-based cloud services. You can easily define workflows in YAML with error handling, conditional steps and retry logic.
This post is divided into two parts. In part one, we’ll take a look at how to define and deploy Cloud Run services. Further, in part two we’ll see how to define and deploy Google Workflows to orchestrate those services.
Overview
The solution consists of two Cloud Run services: bq-load-svc loads CSV data from GCS into BigQuery and bq-dbt-svc performs data transformations using dbt CLI. Additionally, three Google Workflows orchestrate both services, executing steps in the right order and handling validation errors. Finally, Google Cloud Build builds and deploys the artifacts, Google Container Registry stores the images for the services and Google Secret Manager holds the credentials to BigQuery.
Here’s a diagram showing the components of the solution:

dbt project
The dbt project for this solution is practically the same as the one in my previous post. It uses the same macros, models and tests to prepare/validate raw data before loading it into the data warehouse. The difference is that src_usda.yml now contains BigQuery load job configuration parameters in the “meta” key. This is a great feature, as a result you don’t need to add extra configuration files to your solution. For example, the code below shows the definition for the stdref_fd_group source table:
# src_usda.yml
version: 2
sources:
- name: usda
tables:
- name: stdref_fd_group
meta:
load_job_config:
source_format: 'CSV'
field_delimiter: '^'
quote_character: '~'
write_disposition: 'WRITE_TRUNCATE'
create_disposition: 'CREATE_IF_NEEDED'
columns:
- name: fdgrp_cd
- name: fdgrp_desc
...
bq-dbt-svc
The service provides a way to interact with the dbt project through HTTP requests. It is a Flask app that implements two endpoints: source and dbt.
The source endpoint fetches the definition of a table in src_usda.yml and returns it as JSON, while the dbt endpoint executes the dbt CLI in a subprocess and returns the results as JSON. The dbt endpoint is similar to the cli_args option of the dbt rpc server.
In fact, I thought about using the dbt rpc server as dbt service, but it keeps its state in memory, making it unsuitable for Cloud Run. As a matter of fact, applications need to be stateless containers, since Cloud Run may stop container instances after a period of inactivity or create multiple instances under heavy loads. The code below shows the function that handles the requests for the dbt endpoint:
# main.py
# Execute a dbt command
@app.route("/dbt", methods=["POST"])
def run():
app.logger.info("Started processing request on endpoint {}".format(
request.base_url))
command = ["dbt"]
arguments = []
# Parse the request data
request_data = request.get_json()
app.logger.info("Request data: {}".format(request_data))
if request_data:
if "cli" in request_data.get("params", {}):
arguments = request_data["params"]["cli"].split(" ")
command.extend(arguments)
# Add an argument for the project dir if not specified
if not any("--project-dir" in c for c in command):
project_dir = os.environ.get("DBT_PROJECT_DIR", None)
if project_dir:
command.extend(["--project-dir", project_dir])
# Execute the dbt command
result = subprocess.run(command,
text=True,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT)
# Format the response
response = {
"result": {
"status": "ok" if result.returncode == 0 else "error",
"args": result.args,
"return_code": result.returncode,
"command_output": result.stdout,
}
}
app.logger.info("Command output: {}".format(
response["result"]["command_output"]))
app.logger.info("Command status: {}".format(response["result"]["status"]))
app.logger.info("Finished processing request on endpoint {}".format(
request.base_url))
return response, 200
Here’s an example of calling the dbt endpoint locally to compile the staging models:
curl -X POST \
-H 'Content-Type: application/json' \
-d '{"params": {"cli": "compile --project-dir=/workspaces/bq-dbt-poc/bq-dbt-svc/dbt --models=models/staging/usda/*"}}' \
http://172.17.0.2:8080/dbt | jq .
{
"result": {
"args": [
"dbt",
"compile",
"--project-dir=/workspaces/bq-dbt-poc/bq-dbt-svc/dbt",
"--models=models/staging/usda/*"
],
"command_output": "Running with dbt=0.19.1\nFound 13 models, 6 tests, 0 snapshots, 4 analyses, 357 macros, 4 operations, 0 seed files, 4 sources, 0 exposures\n\n20:06:38 | Concurrency: 8 threads (target='dev')\n20:06:38 | \n20:06:39 | Done.\n",
"return_code": 0,
"status": "ok"
}
}
Finally, below is an example of the Dockerfile. As you can see, both the Flask app and the dbt project are deployed into the Docker image:
FROM fishtownanalytics/dbt:0.19.1
ENV PYTHONUNBUFFERED True
ENV APP_HOME /bq-dbt-svc
ENV PORT 8080
ENV DBT_PROFILES_DIR ${APP_HOME}/profiles
ENV DBT_PROJECT_DIR ${APP_HOME}/dbt
ENV FLASK_SERVICE_DIR ${APP_HOME}/flask
# Deploy the code
WORKDIR ${APP_HOME}
COPY dbt/ ${DBT_PROJECT_DIR}/
COPY profiles/profiles.yml ${DBT_PROFILES_DIR}/
COPY flask ${FLASK_SERVICE_DIR}/
# Install dbt dependencies
WORKDIR ${DBT_PROJECT_DIR}
RUN dbt deps
# Install flask service dependencies
WORKDIR ${FLASK_SERVICE_DIR}
RUN python -m venv venv \
&& venv/bin/python -m pip install -r requirements.txt
# Start the flask service
ENTRYPOINT exec venv/bin/python -m gunicorn \
--bind :${PORT} \
--workers 1 \
--threads 8 \
--timeout 0 \
main:app
bq-load-svc
The service loads CSV files from GCS into BigQuery tables. It’s a Flask app that listens for HTTP POST requests on the load endpoint. After receiving a request, it parses the JSON in its body and launches a BigQuery load job. The code below shows the function that handles the requests for the load endpoint:
# main.py
# Load a GCS file into BigQuery
@app.route("/load", methods=['POST'])
def run():
app.logger.info("Started processing request on endpoint {}".format(
request.base_url))
# Parse the request data
request_data = request.get_json()
app.logger.info("Request data: {}".format(request_data))
request_params = request_data.get("params", {})
source_definition = request_params.get("source_definition", None)
source_file_uri = request_params.get("source_file_uri", None)
project_id = request_params.get("project_id", None)
dataset_id = request_params.get("dataset_id", None)
# Verification of missing parameters
if not (source_definition and source_file_uri and project_id and
dataset_id):
if not source_definition:
return error_response(
"The 'source_definition' parameter is required")
if not source_file_uri:
return error_response("The 'source_file_uri' parameter is required")
if not project_id:
return error_response("The 'project_id' parameter is required")
if not dataset_id:
return error_response("The 'dataset_id' parameter is required")
# Load job configuration
table_name = source_definition.get("table", {}).get("name", None)
if not table_name:
return error_response(
"No table name specified in 'source_definition.table.name'")
client = bigquery.Client(project=project_id)
table_ref = client.dataset(dataset_id).table(table_name)
table_load_config = source_definition.get("table", {}).get("meta", {}).get(
"load_job_config", {})
job_config = bigquery.LoadJobConfig(**table_load_config)
# Configure table schema
_schema = []
table_columns = source_definition.get("table", {}).get("columns", [])
for c in table_columns:
if not c.get("name", None):
return error_response(
"No name specified for column in 'source_definition.table.columns'"
)
field = bigquery.SchemaField(
c["name"],
c.get("meta", {}).get("data_type", "string"))
_schema.append(field)
job_config.schema = _schema
try:
job = client.load_table_from_uri(source_file_uri,
table_ref,
job_config=job_config)
job.result() # Wait for the table load to complete
response = {"result": {"status": "ok"}}
except Exception as e:
response = {"result": {"status": "error", "message": e.message}}
finally:
app.logger.info("Finished processing request on endpoint {}".format(
request.base_url))
if response["result"]["status"] == "ok":
return response, 200
else:
return response, 500
Here’s an example of calling the load endpoint locally to load the gs://gcs-ingestion/SR-Leg_ASC/FD_GROUP.txt file into the stdref_fd_group table:
read -r -d '' DATA << EOM
{
"params": {
"project_id": "bigquery-sandbox",
"dataset_id": "bq_demo_ldg",
"source_file_uri": "gs://gcs-ingestion/SR-Leg_ASC/FD_GROUP.txt",
"source_definition": {
"name": "usda",
"table": {
"columns": [
{
"name": "fdgrp_cd"
},
{
"name": "fdgrp_desc"
}
],
"meta": {
"load_job_config": {
"create_disposition": "CREATE_IF_NEEDED",
"field_delimiter": "^",
"quote_character": "~",
"source_format": "CSV",
"write_disposition": "WRITE_TRUNCATE"
}
},
"name": "stdref_fd_group"
}
}
}
}
EOM
curl -X POST \
-H 'Content-Type: application/json' \
-d $DATA \
http://172.17.0.2:8080/load | jq .
```
Response:
```json
{
"result": {
"status": "ok"
}
}
The content of the source_definition property comes from calling the source endpoint on the bq-dbt-svc service. I put together the JSON for the example, but as we’ll see in part two, a workflow will take care of calling bq-dbt-svc and building the request for bq-load-svc.
Deployment to Google Cloud (GCP)
Deploying the Cloud Run services to GCP is straightforward. The code below shows the Cloud Build config for bq-dbt-svc. First, it builds the docker image and publishes it on the Container Registry. Second, it deploys the container image to Cloud Run with the parameters specified. Finally, it adds an IAM policy binding to the role roles/run.invoker for the service account so that Workflows can invoke the service. The –update-secrets argument mounts the bq-dbt-sa-key secret in Secret Manager as a volume in the container. The secret is the JSON key for the service account, and dbt CLI uses it to authenticate to BigQuery.
# cb-bq-dbt-svc.yml
steps:
- name: 'gcr.io/cloud-builders/docker'
args: [ 'build', '-t', 'gcr.io/$PROJECT_ID/bq-dbt-svc', '.' ]
- name: 'gcr.io/cloud-builders/docker'
args: ['push', 'gcr.io/$PROJECT_ID/bq-dbt-svc']
- name: 'gcr.io/google.com/cloudsdktool/cloud-sdk'
entrypoint: gcloud
args: ['beta', 'run', 'deploy', 'bq-dbt-svc',
'--image', 'gcr.io/$PROJECT_ID/bq-dbt-svc',
'--region', 'us-central1',
'--platform', 'managed',
'--port', '8080',
'--cpu', '1',
'--memory', '512Mi',
'--concurrency', '1',
'--service-account', 'bq-dbt-sa@bigquery-sandbox.iam.gserviceaccount.com',
'--update-secrets', '/bq-dbt-svc/keys/sa-key.json=bq-dbt-sa-key:latest',
'--no-allow-unauthenticated']
- name: 'gcr.io/google.com/cloudsdktool/cloud-sdk'
entrypoint: gcloud
args: ['beta', 'run', 'services', 'add-iam-policy-binding', 'bq-dbt-svc',
'--region', 'us-central1',
'--member', 'serviceAccount:bq-dbt-sa@bigquery-sandbox.iam.gserviceaccount.com',
'--role', 'roles/run.invoker']
images:
- 'gcr.io/$PROJECT_ID/bq-dbt-svc'
The command below starts the deployment by submitting the build config to Cloud Build:
gcloud builds submit ./bq-dbt-svc \ --config=./cloud-build/services/cb-bq-dbt-svc.yml \ --project bigquery-sandbox
Make sure the service account has the IAM policy bindings below, otherwise it will not be able to access all the components:
gcloud projects add-iam-policy-binding bigquery-sandbox --member=serviceAccount:bq-dbt-sa@bigquery-sandbox.iam.gserviceaccount.com --role=roles/bigquery.dataOwner gcloud projects add-iam-policy-binding bigquery-sandbox --member=serviceAccount:bq-dbt-sa@bigquery-sandbox.iam.gserviceaccount.com --role=roles/bigquery.jobUser gcloud projects add-iam-policy-binding bigquery-sandbox --member=serviceAccount:bq-dbt-sa@bigquery-sandbox.iam.gserviceaccount.com --role=roles/secretmanager.secretAccessor gcloud projects add-iam-policy-binding bigquery-sandbox --member=serviceAccount:bq-dbt-sa@bigquery-sandbox.iam.gserviceaccount.com --role=roles/storage.objectViewer gcloud projects add-iam-policy-binding bigquery-sandbox --member=serviceAccount:bq-dbt-sa@bigquery-sandbox.iam.gserviceaccount.com --role=roles/logging.logWriter gcloud projects add-iam-policy-binding bigquery-sandbox --member=serviceAccount:bq-dbt-sa@bigquery-sandbox.iam.gserviceaccount.com --role=roles/workflows.invoker
Here’s a screenshot of the two services after being deployed to GCP:

Conclusion
In this post we saw how to define and deploy two data services to Cloud Run. We can now load files from GCS to BigQuery or apply data transformations with dbt by sending HTTP requests. Moreover, we don’t need to provision any infrastructure and the services can scale up under heavy loads. In part two, we will see how to use Google Workflows to orchestrate the calls to these services.
Thanks for reading! Please leave a comment if you have any thoughts or questions and don’t forget to sign up for updates.
Share this
- Technical Track (816)
- Oracle (488)
- Database (229)
- MySQL (144)
- Cloud (133)
- Microsoft SQL Server (124)
- Open Source (84)
- Google Cloud (82)
- Microsoft Azure (67)
- Amazon Web Services (AWS) (63)
- Big Data (50)
- Cassandra (44)
- Google Cloud Platform (44)
- DevOps (38)
- Linux (28)
- Pythian (27)
- PostgreSQL (26)
- Podcasts (25)
- Site Reliability Engineering (23)
- Performance (22)
- Docker (21)
- Oracle E-Business Suite (21)
- DBA (18)
- Oracle Cloud Infrastructure (OCI) (18)
- MongoDB (17)
- Security (17)
- Hadoop (16)
- BigQuery (15)
- Amazon RDS (14)
- Automation (14)
- Exadata (14)
- Oracleebs (14)
- Snowflake (14)
- Ansible (13)
- Oracle Database (13)
- Oracle Exadata (13)
- ASM (12)
- Data (12)
- LLM (12)
- Artificial Intelligence (AI) (11)
- GenAI (11)
- Kubernetes (11)
- Machine Learning (11)
- Advanced Analytics (10)
- Datascape Podcast (10)
- Oracle Applications (10)
- Replication (10)
- Authentication, SSO and MFA (8)
- ChatGPT (8)
- Cloud Migration (8)
- Infrastructure (8)
- Monitoring (8)
- Percona (8)
- Analytics (7)
- Apache (7)
- Apache Cassandra (7)
- Data Governance (7)
- High Availability (7)
- Mariadb (7)
- Microsoft Azure SQL Database (7)
- Myrocks (7)
- Oracle EBS (7)
- Python (7)
- Rman (7)
- SAP (7)
- Series (7)
- AWR (6)
- Airflow (6)
- Apache Beam (6)
- Data Guard (6)
- Innodb (6)
- Migration (6)
- Oracle Enterprise Manager (OEM) (6)
- Orchestrator (6)
- RocksDB (6)
- Azure Synapse Analytics (5)
- Covid-19 (5)
- Data Enablement (5)
- Disaster Recovery (5)
- Microsoft (5)
- Performance Tuning (5)
- Scala (5)
- Serverless (5)
- Cloud Security (4)
- Cloud Spanner (4)
- CockroachDB (4)
- Data Management (4)
- Data Pipeline (4)
- Data Security (4)
- Data Strategy (4)
- Data Visualization (4)
- Databases (4)
- Dataflow (4)
- Generative AI (4)
- Google (4)
- Google BigQuery (4)
- Oracle Autonomous Database (Adb) (4)
- Oracle Cloud (4)
- Oracle Enterprise Manager (4)
- Redhat (4)
- Ssl (4)
- Windows (4)
- Xtrabackup (4)
- Amazon Relational Database Service (Rds) (3)
- Apex (3)
- Cloud Database (3)
- Cloud FinOps (3)
- Data Analytics (3)
- Data Migrations (3)
- Database Migration (3)
- Digital Transformation (3)
- ERP (3)
- Google Chrome (3)
- Google Cloud Sql (3)
- Google Workspace (3)
- Heterogeneous Database Migration (3)
- Oracle Live Sql (3)
- Oracle Rac (3)
- Perl (3)
- Power Bi (3)
- Prometheus (3)
- Remote Teams (3)
- Slob (3)
- Tensorflow (3)
- Terraform (3)
- Amazon Data Migration Service (2)
- Amazon Ec2 (2)
- Anisble (2)
- Apache Flink (2)
- Apache Kafka (2)
- Apexexport (2)
- Ashdump (2)
- Aurora (2)
- Azure Data Factory (2)
- Cloud Armor (2)
- Cloud Data Fusion (2)
- Cloud Hosting (2)
- Cloud Infrastructure (2)
- Cloud Shell (2)
- Cloud Sql (2)
- Conferences (2)
- Cosmos Db (2)
- Cosmosdb (2)
- Cost Management (2)
- Data Discovery (2)
- Data Integration (2)
- Data Quality (2)
- Data Streaming (2)
- Database Administrator (2)
- Database Consulting (2)
- Database Monitoring (2)
- Database Performance (2)
- Database Troubleshooting (2)
- Dataguard (2)
- Dataops (2)
- Enterprise Data Platform (EDP) (2)
- Events (2)
- Fusion Middleware (2)
- Gemini (2)
- Graphite (2)
- Infrastructure As Code (2)
- Innodb Cluster (2)
- Innodb File Structure (2)
- Innodb Group Replication (2)
- Liquibase (2)
- NLP (2)
- Nosql (2)
- Oracle Data Guard (2)
- Oracle Datase (2)
- Oracle Flashback (2)
- Oracle Forms (2)
- Oracle Installation (2)
- Oracle Io Testing (2)
- Podcast (2)
- Rdbms (2)
- Redshift (2)
- Remote DBA (2)
- Remote Sre (2)
- S3 (2)
- Single Sign-On (2)
- Webinars (2)
- X5 (2)
- AI (1)
- Actifio (1)
- Adop (1)
- Advanced Data Services (1)
- Afd (1)
- Alloydb (1)
- Amazon (1)
- Amazon Aurora Backtrack (1)
- Amazon Efs (1)
- Amazon Redshift (1)
- Amazon S3 (1)
- Amazon Sagemaker (1)
- Amazon Vpc Flow Logs (1)
- Analysis (1)
- Analytical Models (1)
- Anthos (1)
- Application Migration (1)
- Ash (1)
- Asmlib (1)
- Atp (1)
- Autonomous (1)
- Awr Data Mining (1)
- Awr Mining (1)
- Azure Data Lake (1)
- Azure Data Lake Analytics (1)
- Azure Data Lake Store (1)
- Azure Data Migration Service (1)
- Azure OpenAI (1)
- Azure Sql Data Warehouse (1)
- Batches In Cassandra (1)
- Business Insights (1)
- Business Intelligence (1)
- Chown (1)
- Chrome Security (1)
- Cloud Browser (1)
- Cloud Build (1)
- Cloud Consulting (1)
- Cloud Cost Optimization (1)
- Cloud Data Warehouse (1)
- Cloud Database Management (1)
- Cloud Dataproc (1)
- Cloud Foundry (1)
- Cloud Networking (1)
- Cloud SQL Replica (1)
- Cloud Scheduler (1)
- Cloud Services (1)
- Cloud Strategies (1)
- Compliance (1)
- Conversational AI (1)
- Cyber Security (1)
- Data Analysis (1)
- Data Analytics Platform (1)
- Data Box (1)
- Data Classification (1)
- Data Cleansing (1)
- Data Encryption (1)
- Data Engineering (1)
- Data Estate (1)
- Data Insights (1)
- Data Integrity (1)
- Data Leader (1)
- Data Lifecycle Management (1)
- Data Lineage (1)
- Data Masking (1)
- Data Mesh (1)
- Data Migration (1)
- Data Migration Assistant (1)
- Data Migration Service (1)
- Data Mining (1)
- Data Monetization (1)
- Data Policy (1)
- Data Profiling (1)
- Data Protection (1)
- Data Retention (1)
- Data Safe (1)
- Data Sheets (1)
- Data Summit (1)
- Data Vault (1)
- Data Warehouse (1)
- Database Consultant (1)
- Database Link (1)
- Database Management (1)
- Database Migrations (1)
- Database Modernization (1)
- Database Provisioning (1)
- Database Provisioning Failed (1)
- Database Replication (1)
- Database Schemas (1)
- Database Upgrade (1)
- Databricks (1)
- Datascape 59 (1)
- DeepSeek (1)
- Docker-Composer (1)
- Duet AI (1)
- Edp (1)
- Etl (1)
- Gcp Compute (1)
- Gcp-Spanner (1)
- Global Analytics (1)
- Google Analytics (1)
- Google Cloud Architecture Framework (1)
- Google Cloud Data Services (1)
- Google Cloud Partner (1)
- Google Cloud Spanner (1)
- Google Cloud VMware Engine (1)
- Google Compute Engine (1)
- Google Dataflow (1)
- Google Datalab (1)
- Google Grab And Go (1)
- Graph Algorithms (1)
- Graph Inferences (1)
- Graph Theory (1)
- GraphQL (1)
- Health Check (1)
- Healthcheck (1)
- Information (1)
- Infrastructure As A Code (1)
- Innobackupex (1)
- Innodb Concurrency (1)
- Innodb Flush Method (1)
- It Industry (1)
- Kubeflow (1)
- LMSYS Chatbot Arena (1)
- Linux Host Monitoring (1)
- Linux Storage Appliance (1)
- Looker (1)
- MMLU (1)
- Managed Services (1)
- Migrate (1)
- Neo4J (1)
- Newsroom (1)
- Nifi (1)
- OPEX (1)
- Odbcs (1)
- Odbs (1)
- On-Premises (1)
- Open Source Database (1)
- Ora-01852 (1)
- Ora-7445 (1)
- Oracle Cursor (1)
- Oracle Database@Google Cloud (1)
- Oracle Exadata Smart Scan (1)
- Oracle Licensing (1)
- Oracle Linux Virtualization Manager (1)
- Oracle Oda (1)
- Oracle Openworld (1)
- Oracle Parallelism (1)
- Oracle RMAN (1)
- Oracle Rdbms (1)
- Oracle Real Application Clusters (1)
- Oracle Reports (1)
- Oracle Security (1)
- Perfomrance (1)
- Performance Schema (1)
- Policy (1)
- Prompt Engineering (1)
- Public Cloud (1)
- Pythian News (1)
- Rdb (1)
- Replication Error (1)
- Retail (1)
- SAP HANA Cloud (1)
- Securing Sql Server (1)
- Serverless Computing (1)
- Sso (1)
- Tenserflow (1)
- Teradata (1)
- Vertex AI (1)
- Videos (1)
- Workspace Security (1)
- Xbstream (1)
- August 2025 (1)
- July 2025 (3)
- June 2025 (1)
- May 2025 (3)
- March 2025 (2)
- February 2025 (1)
- January 2025 (2)
- December 2024 (1)
- October 2024 (2)
- September 2024 (7)
- August 2024 (4)
- July 2024 (2)
- June 2024 (6)
- May 2024 (3)
- April 2024 (2)
- February 2024 (1)
- January 2024 (11)
- December 2023 (10)
- November 2023 (9)
- October 2023 (11)
- September 2023 (9)
- August 2023 (6)
- July 2023 (2)
- June 2023 (13)
- May 2023 (4)
- April 2023 (6)
- March 2023 (10)
- February 2023 (6)
- January 2023 (5)
- December 2022 (10)
- November 2022 (10)
- October 2022 (10)
- September 2022 (13)
- August 2022 (16)
- July 2022 (12)
- June 2022 (13)
- May 2022 (11)
- April 2022 (4)
- March 2022 (5)
- February 2022 (4)
- January 2022 (14)
- December 2021 (16)
- November 2021 (11)
- October 2021 (6)
- September 2021 (11)
- August 2021 (6)
- July 2021 (9)
- June 2021 (4)
- May 2021 (8)
- April 2021 (16)
- March 2021 (16)
- February 2021 (6)
- January 2021 (12)
- December 2020 (12)
- November 2020 (17)
- October 2020 (11)
- September 2020 (10)
- August 2020 (11)
- July 2020 (13)
- June 2020 (6)
- May 2020 (9)
- April 2020 (18)
- March 2020 (21)
- February 2020 (13)
- January 2020 (15)
- December 2019 (10)
- November 2019 (11)
- October 2019 (12)
- September 2019 (16)
- August 2019 (15)
- July 2019 (10)
- June 2019 (16)
- May 2019 (20)
- April 2019 (21)
- March 2019 (14)
- February 2019 (18)
- January 2019 (18)
- December 2018 (5)
- November 2018 (16)
- October 2018 (12)
- September 2018 (20)
- August 2018 (27)
- July 2018 (31)
- June 2018 (34)
- May 2018 (28)
- April 2018 (27)
- March 2018 (17)
- February 2018 (8)
- January 2018 (20)
- December 2017 (14)
- November 2017 (4)
- October 2017 (1)
- September 2017 (3)
- August 2017 (5)
- July 2017 (4)
- June 2017 (2)
- May 2017 (7)
- April 2017 (7)
- March 2017 (8)
- February 2017 (8)
- January 2017 (5)
- December 2016 (3)
- November 2016 (4)
- October 2016 (8)
- September 2016 (9)
- August 2016 (10)
- July 2016 (9)
- June 2016 (8)
- May 2016 (13)
- April 2016 (16)
- March 2016 (13)
- February 2016 (11)
- January 2016 (6)
- December 2015 (11)
- November 2015 (11)
- October 2015 (5)
- September 2015 (16)
- August 2015 (4)
- July 2015 (1)
- June 2015 (3)
- May 2015 (6)
- April 2015 (5)
- March 2015 (5)
- February 2015 (4)
- January 2015 (3)
- December 2014 (7)
- October 2014 (4)
- September 2014 (6)
- August 2014 (6)
- July 2014 (16)
- June 2014 (7)
- May 2014 (6)
- April 2014 (5)
- March 2014 (4)
- February 2014 (10)
- January 2014 (6)
- December 2013 (8)
- November 2013 (12)
- October 2013 (9)
- September 2013 (6)
- August 2013 (7)
- July 2013 (9)
- June 2013 (7)
- May 2013 (7)
- April 2013 (4)
- March 2013 (7)
- February 2013 (4)
- January 2013 (4)
- December 2012 (6)
- November 2012 (8)
- October 2012 (9)
- September 2012 (3)
- August 2012 (5)
- July 2012 (5)
- June 2012 (7)
- May 2012 (11)
- April 2012 (1)
- March 2012 (8)
- February 2012 (1)
- January 2012 (6)
- December 2011 (8)
- November 2011 (5)
- October 2011 (9)
- September 2011 (6)
- August 2011 (4)
- July 2011 (1)
- June 2011 (1)
- May 2011 (5)
- April 2011 (2)
- February 2011 (2)
- January 2011 (2)
- December 2010 (1)
- November 2010 (7)
- October 2010 (3)
- September 2010 (8)
- August 2010 (2)
- July 2010 (4)
- June 2010 (7)
- May 2010 (2)
- April 2010 (1)
- March 2010 (3)
- February 2010 (3)
- January 2010 (2)
- November 2009 (6)
- October 2009 (6)
- August 2009 (3)
- July 2009 (3)
- June 2009 (3)
- May 2009 (2)
- April 2009 (8)
- March 2009 (6)
- February 2009 (4)
- January 2009 (3)
- November 2008 (3)
- October 2008 (7)
- September 2008 (6)
- August 2008 (9)
- July 2008 (9)
- June 2008 (9)
- May 2008 (9)
- April 2008 (8)
- March 2008 (4)
- February 2008 (3)
- January 2008 (3)
- December 2007 (2)
- November 2007 (7)
- October 2007 (1)
- August 2007 (4)
- July 2007 (3)
- June 2007 (8)
- May 2007 (4)
- April 2007 (2)
- March 2007 (2)
- February 2007 (5)
- January 2007 (8)
- December 2006 (1)
- November 2006 (3)
- October 2006 (4)
- September 2006 (3)
- July 2006 (1)
- May 2006 (2)
- April 2006 (1)
- July 2005 (1)
No Comments Yet
Let us know what you think