Share this
Sleuthing for Temporary Space Spendthrifts
by Pythian Marketing on Dec 20, 2012 12:00:00 AM
I was recently looking at an issue where a large database server was running out of temp space. The issue had occurred in the past, so the goal was to identify what had been causing the system to run out of temp. Although ORA-1555 messages will appear in the database alert log (with query text) when a query runs out of temporary space, they only talk about the query that was “unlucky” enough to be attempting to get space when the tablespace was full, not who was using the temp space.
A quick web search shows that most people seem to be querying current tables. Coskan Gundogar blogged about a historical monitoring script he wrote but only drilled down into a specific session and serial number.
A quick look at AWR showed that v$tempseg_usage had no direct historical view. There is dba_hist_tbspc_usage info for the temp tablespace, but it only shows aggregate usage.
However, dba_hist_active_sess_history, the AWR samples of active session history data, has a new column in 11gR2: TEMP_SPACE_ALLOCATED. From the docs:
Amount of TEMP memory (in bytes) consumed by this session at the time this sample was taken.
Having temp usage in a table like ASH is actually much more useful than a v$tempseg_usage capture since it lets us drill down not only to the query, but also to the exact SQL plan and plan step where the temp space is being used.
Querying out the data requires a bit of elbow grease though: There is no delta column like for the I/O and time model stats, so we need to use some fancy analytic functions to compute the delta values ourselves.
dba_hist_active_sess_history itself is a view composed of multiple joins on the back end, so it takes quite a while to query. I generally create a fixed version of the table with the timestamp I want to analyze, in order to speed up the queries later. And since this is an Exadata system, I’ll take advantage of hybrid columnar compression. Adjust the begin_interval_time
range to match the date range you’re looking at.
CREATE TABLE marc_ash COMPRESS FOR QUERY LOW as SELECT * FROM dba_hist_active_sess_history WHERE dbid = (SELECT dbid FROM v$database) AND snap_id IN (SELECT snap_id FROM dba_hist_snapshot WHERE dbid = (SELECT dbid FROM v$database) AND begin_interval_time BETWEEN To_date( '20-DEC-2012 05:00', 'dd-mon-yyyy hh24:mi') AND To_date( '20-DEC-2012 10:00', 'dd-mon-yyyy hh24:mi'));
(Side note: I’m trying out an online SQL beautifier tool. Readers, do you find this format easier to read?)
Once the base table is created, I can query it:
(Thanks to Randolf Geist for pointing out a missing grouping for parallel execution)
SELECT * FROM (SELECT Rank() over ( ORDER BY SUM(Nvl(temp_space_delta, 0)) DESC) position, sql_id, sql_plan_hash_value, sql_plan_operation, sql_plan_line_id, Count(DISTINCT sql_exec_id) total_execs, Trunc(SUM(Nvl(temp_space_delta, 0)) / 1024 / 1024) ||'m' temp_usage FROM (SELECT sql_exec_id, sql_id, sql_plan_hash_value, sql_plan_operation, sql_plan_line_id, temp_space_allocated - Nvl(Lag(temp_space_allocated, 1) over ( PARTITION BY sql_exec_id, sql_id, session_id ORDER BY sample_id), 0) temp_space_delta FROM marc_ash) GROUP BY sql_id, sql_plan_operation, sql_plan_hash_value, sql_plan_line_id) WHERE position <= 10 ORDER BY position;
A bit of explanation is in order: The core of the query selects from marc_ash using the lag() analytic function to get the previous temp space allocation for the same execution, SQL statement, and parallel query process, and subtracts it to get the difference in temp space usage for the current sample. I then take this result, plus some information about the SQL step executing, and group it by SQL ID, plan operation, and line ID. And finally, I sort the results, keeping the top 10, and apply some formatting to the result.
And as is usual with ASH, since I’m only looking at 10-second samples of data, the results don’t reflect 100% what really happened. Though the longer the execution step runs, the more accurate the end results will be.
Here’s a sample result (with a bit of cleanup of the column headers):
POSITION SQL_ID SQL_PLAN_HASH SQL_PLAN_OP SQL_PLAN_LINE_ID TOTAL_EXECS TEMP_USAGE ------- --------------- --------------- --------------- --------------- --------------- ---------- 1 a9hrk7g2ahbtk 1062456949 HASH JOIN 15 1 142607m 2 b40ahcxu8nxdq 2741224596 HASH JOIN 21 1 139959m 3 b62gn3yqyau4k 3673174370 SORT 1 4 92378m 4 5rf3btrz44d6v 3879859951 SORT 3 1 35128m 5 5rf3btrz44d6v 3879859951 SORT 6 1 34095m 6 8ucjdxhxwz93g 2599798119 HASH 15 1 10873m 7 901mxasy6gu2j 801798936 SORT 2 28 6268m 8 4b7jatzjaf4z3 270793325 SORT 3 3 5876m 9 0h5cvsbs92cyp 1935762178 SORT 1 3 4522m 10 84z212am4j987 3445415588 SORT 1 2 4182m
During this time period, there was high temp usage from the two plan steps of SQL ID 5rf3btrz44d6v. Even though it only ran once, it consumed close to 70G of temp space during this period. The benefit of using ASH data, though, is that I not only know which SQL statement is responsible, but I also have an idea of which plan steps are responsible: two sort operations.
We can plug in the SQL ID and plan hash value in the output to dbms_xplan.display_awr
to see the plan itself. The results show the full query text as well as the execution pan involved.
A short snippet of the plan:
------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time | Pstart| Pstop | TQ |IN-OUT| PQ Distrib | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | 0 | SELECT STATEMENT | | | | | 100K(100)| | | | | | | | 1 | PX COORDINATOR | | | | | | | | | | | | | 2 | PX SEND QC (ORDER) | :TQ10009 | 76M| 18G| | 100K (1)| 00:20:04 | | | Q1,09 | P->S | QC (ORDER) | | 3 | SORT ORDER BY | | 76M| 18G| 21G| 100K (1)| 00:20:04 | | | Q1,09 | PCWP | | | 4 | PX RECEIVE | | 76M| 18G| | 100K (1)| 00:20:04 | | | Q1,09 | PCWP | | | 5 | PX SEND RANGE | :TQ10008 | 76M| 18G| | 100K (1)| 00:20:04 | | | Q1,08 | P->P | RANGE | | 6 | SORT GROUP BY | | 76M| 18G| 21G| 100K (1)| 00:20:04 | | | Q1,08 | PCWP | | | 7 | PX RECEIVE | | 76M| 18G| | 100K (1)| 00:20:04 | | | Q1,08 | PCWP | | | 8 | PX SEND HASH | :TQ10007 | 76M| 18G| | 100K (1)| 00:20:04 | | | Q1,07 | P->P | HASH | | 9 | HASH GROUP BY | | 76M| 18G| 21G| 100K (1)| 00:20:04 | | | Q1,07 | PCWP | | | 10 | VIEW | VW_DAG_0 | 76M| 18G| | 67638 (1)| 00:13:32 | | | Q1,07 | PCWP | | | 11 | HASH GROUP BY | | 76M| 16G| 17G| 67638 (1)| 00:13:32 | | | Q1,07 | PCWP | | | 12 | HASH JOIN | | 76M| 16G| | 37552 (2)| 00:07:31 | | | Q1,07 | PCWP | | | 13 | BUFFER SORT | | | | | | | | | Q1,07 | PCWC | | | 14 | PX RECEIVE | | 2709K| 67M| | 5287 (1)| 00:01:04 | | | Q1,07 | PCWP | | | 15 | PX SEND HASH | :TQ10004 | 2709K| 67M| | 5287 (1)| 00:01:04 | | | | S->P | HASH | | 16 | TABLE ACCESS STORAGE FULL | TAB1 | 2709K| 67M| | 5287 (1)| 00:01:04 | | | | | |
A very quick look at this execution plan seems to indicate that it’s returning an absolutely massive dataset to the database client and sorting it twice. It would benefit from more conditions to restrict results to what the client is actually looking for.
Any comments, readers? How are you monitoring for temp space usage? Anyone using resource management to control temp usage?
Share this
- Technical Track (967)
- Oracle (410)
- MySQL (140)
- Cloud (128)
- Microsoft SQL Server (117)
- Open Source (90)
- Google Cloud (81)
- Microsoft Azure (63)
- Amazon Web Services (AWS) (58)
- Big Data (52)
- Google Cloud Platform (46)
- Cassandra (44)
- DevOps (41)
- Pythian (33)
- Linux (30)
- Database (26)
- Performance (25)
- Podcasts (25)
- Site Reliability Engineering (25)
- PostgreSQL (24)
- Oracle E-Business Suite (23)
- Oracle Database (22)
- Docker (21)
- DBA (20)
- Security (20)
- Exadata (18)
- MongoDB (18)
- Oracle Cloud Infrastructure (OCI) (18)
- Oracle Exadata (18)
- Automation (17)
- Hadoop (16)
- Oracleebs (16)
- Amazon RDS (15)
- Ansible (15)
- Snowflake (15)
- ASM (13)
- Artificial Intelligence (AI) (13)
- BigQuery (13)
- Replication (13)
- Advanced Analytics (12)
- Data (12)
- GenAI (12)
- Kubernetes (12)
- LLM (12)
- Authentication, SSO and MFA (11)
- Cloud Migration (11)
- Machine Learning (11)
- Rman (11)
- Datascape Podcast (10)
- Monitoring (10)
- Apache Cassandra (9)
- ChatGPT (9)
- Data Guard (9)
- Infrastructure (9)
- Oracle Applications (9)
- Python (9)
- Series (9)
- AWR (8)
- High Availability (8)
- Oracle EBS (8)
- Oracle Enterprise Manager (OEM) (8)
- Percona (8)
- Apache Beam (7)
- Data Governance (7)
- Innodb (7)
- Microsoft Azure SQL Database (7)
- Migration (7)
- Myrocks (7)
- Performance Tuning (7)
- Data Enablement (6)
- Data Visualization (6)
- Database Performance (6)
- Oracle Enterprise Manager (6)
- Orchestrator (6)
- RocksDB (6)
- Serverless (6)
- Azure Data Factory (5)
- Azure Synapse Analytics (5)
- Covid-19 (5)
- Disaster Recovery (5)
- Generative AI (5)
- Google BigQuery (5)
- Mariadb (5)
- Microsoft (5)
- Scala (5)
- Windows (5)
- Xtrabackup (5)
- Airflow (4)
- Analytics (4)
- Apex (4)
- Cloud Security (4)
- Cloud Spanner (4)
- CockroachDB (4)
- Data Management (4)
- Data Pipeline (4)
- Data Security (4)
- Data Strategy (4)
- Database Administrator (4)
- Database Management (4)
- Database Migration (4)
- Dataflow (4)
- Fusion Middleware (4)
- Google (4)
- Oracle Autonomous Database (Adb) (4)
- Oracle Cloud (4)
- Prometheus (4)
- Redhat (4)
- Slob (4)
- Ssl (4)
- Terraform (4)
- Amazon Relational Database Service (Rds) (3)
- Apache Kafka (3)
- Apexexport (3)
- Aurora (3)
- Business Intelligence (3)
- Cloud Armor (3)
- Cloud Database (3)
- Cloud FinOps (3)
- Cosmos Db (3)
- Data Analytics (3)
- Data Integration (3)
- Database Monitoring (3)
- Database Troubleshooting (3)
- Database Upgrade (3)
- Databases (3)
- Dataops (3)
- Digital Transformation (3)
- ERP (3)
- Google Chrome (3)
- Google Cloud Sql (3)
- Google Workspace (3)
- Graphite (3)
- Heterogeneous Database Migration (3)
- Liquibase (3)
- Oracle Data Guard (3)
- Oracle Live Sql (3)
- Oracle Rac (3)
- Perl (3)
- Rdbms (3)
- Remote Teams (3)
- S3 (3)
- SAP (3)
- Tensorflow (3)
- Adf (2)
- Adop (2)
- Amazon Data Migration Service (2)
- Amazon Ec2 (2)
- Amazon S3 (2)
- Apache Flink (2)
- Ashdump (2)
- Atp (2)
- Autonomous (2)
- Awr Data Mining (2)
- Cloud Cost Optimization (2)
- Cloud Data Fusion (2)
- Cloud Hosting (2)
- Cloud Infrastructure (2)
- Cloud Shell (2)
- Cloud Sql (2)
- Conferences (2)
- Cosmosdb (2)
- Cost Management (2)
- Cyber Security (2)
- Data Analysis (2)
- Data Discovery (2)
- Data Engineering (2)
- Data Migration (2)
- Data Modeling (2)
- Data Quality (2)
- Data Streaming (2)
- Data Warehouse (2)
- Database Consulting (2)
- Database Migrations (2)
- Dataguard (2)
- Docker-Composer (2)
- Enterprise Data Platform (EDP) (2)
- Etl (2)
- Events (2)
- Gemini (2)
- Health Check (2)
- Infrastructure As Code (2)
- Innodb Cluster (2)
- Innodb File Structure (2)
- Innodb Group Replication (2)
- NLP (2)
- Neo4J (2)
- Nosql (2)
- Open Source Database (2)
- Oracle Datase (2)
- Oracle Extended Manager (Oem) (2)
- Oracle Flashback (2)
- Oracle Forms (2)
- Oracle Installation (2)
- Oracle Io Testing (2)
- Podcast (2)
- Power Bi (2)
- Redshift (2)
- Remote DBA (2)
- Remote Sre (2)
- SAP HANA Cloud (2)
- Single Sign-On (2)
- Webinars (2)
- X5 (2)
- Actifio (1)
- Adf Custom Email (1)
- Adrci (1)
- Advanced Data Services (1)
- Afd (1)
- Ahf (1)
- Alloydb (1)
- Amazon (1)
- Amazon Athena (1)
- Amazon Aurora Backtrack (1)
- Amazon Efs (1)
- Amazon Redshift (1)
- Amazon Sagemaker (1)
- Amazon Vpc Flow Logs (1)
- Analysis (1)
- Analytical Models (1)
- Anisble (1)
- Anthos (1)
- Apache (1)
- Apache Nifi (1)
- Apache Spark (1)
- Application Migration (1)
- Ash (1)
- Asmlib (1)
- Atlas CLI (1)
- Awr Mining (1)
- Aws Lake Formation (1)
- Azure Data Lake (1)
- Azure Data Lake Analytics (1)
- Azure Data Lake Store (1)
- Azure Data Migration Service (1)
- Azure OpenAI (1)
- Azure Sql Data Warehouse (1)
- Batches In Cassandra (1)
- Business Insights (1)
- Chown (1)
- Chrome Security (1)
- Cloud Browser (1)
- Cloud Build (1)
- Cloud Consulting (1)
- Cloud Data Warehouse (1)
- Cloud Database Management (1)
- Cloud Dataproc (1)
- Cloud Foundry (1)
- Cloud Manager (1)
- Cloud Networking (1)
- Cloud SQL Replica (1)
- Cloud Scheduler (1)
- Cloud Services (1)
- Cloud Strategies (1)
- Compliance (1)
- Conversational AI (1)
- DAX (1)
- Data Analytics Platform (1)
- Data Box (1)
- Data Classification (1)
- Data Cleansing (1)
- Data Encryption (1)
- Data Estate (1)
- Data Flow Management (1)
- Data Insights (1)
- Data Integrity (1)
- Data Lake (1)
- Data Leader (1)
- Data Lifecycle Management (1)
- Data Lineage (1)
- Data Masking (1)
- Data Mesh (1)
- Data Migration Assistant (1)
- Data Migration Service (1)
- Data Mining (1)
- Data Monetization (1)
- Data Policy (1)
- Data Profiling (1)
- Data Protection (1)
- Data Retention (1)
- Data Safe (1)
- Data Sheets (1)
- Data Summit (1)
- Data Vault (1)
- Data Warehouse Modernization (1)
- Database Auditing (1)
- Database Consultant (1)
- Database Link (1)
- Database Modernization (1)
- Database Provisioning (1)
- Database Provisioning Failed (1)
- Database Replication (1)
- Database Scaling (1)
- Database Schemas (1)
- Database Security (1)
- Databricks (1)
- Datascape 59 (1)
- DeepSeek (1)
- Duet AI (1)
- Edp (1)
- Gcp Compute (1)
- Gcp-Spanner (1)
- Global Analytics (1)
- Google Analytics (1)
- Google Cloud Architecture Framework (1)
- Google Cloud Data Services (1)
- Google Cloud Partner (1)
- Google Cloud Spanner (1)
- Google Cloud VMware Engine (1)
- Google Compute Engine (1)
- Google Dataflow (1)
- Google Datalab (1)
- Google Grab And Go (1)
- Graph Algorithms (1)
- Graph Databases (1)
- Graph Inferences (1)
- Graph Theory (1)
- GraphQL (1)
- Healthcheck (1)
- Information (1)
- Infrastructure As A Code (1)
- Innobackupex (1)
- Innodb Concurrency (1)
- Innodb Flush Method (1)
- It Industry (1)
- Kubeflow (1)
- LMSYS Chatbot Arena (1)
- Linux Host Monitoring (1)
- Linux Storage Appliance (1)
- Looker (1)
- MMLU (1)
- Managed Services (1)
- Migrate (1)
- Migrating Ssis Catalog (1)
- Migration Checklist (1)
- MongoDB Atlas (1)
- MongoDB Compass (1)
- Newsroom (1)
- Nifi (1)
- OPEX (1)
- ORAPKI (1)
- Odbcs (1)
- Odbs (1)
- On-Premises (1)
- Ora-01852 (1)
- Ora-7445 (1)
- Oracle Cursor (1)
- Oracle Database Appliance (1)
- Oracle Database Se2 (1)
- Oracle Database Standard Edition 2 (1)
- Oracle Database Upgrade (1)
- Oracle Database@Google Cloud (1)
- Oracle Exadata Smart Scan (1)
- Oracle Licensing (1)
- Oracle Linux Virtualization Manager (1)
- Oracle Oda (1)
- Oracle Openworld (1)
- Oracle Parallelism (1)
- Oracle RMAN (1)
- Oracle Rdbms (1)
- Oracle Real Application Clusters (1)
- Oracle Reports (1)
- Oracle Security (1)
- Oracle Wallet (1)
- Perfomrance (1)
- Performance Schema (1)
- Policy (1)
- Prompt Engineering (1)
- Public Cloud (1)
- Pythian News (1)
- Rdb (1)
- Replication Compatibility (1)
- Replication Error (1)
- Retail (1)
- Scaling Ir (1)
- Securing Sql Server (1)
- Security Compliance (1)
- Serverless Computing (1)
- Sso (1)
- Tenserflow (1)
- Teradata (1)
- Vertex AI (1)
- Vertica (1)
- Videos (1)
- Workspace Security (1)
- Xbstream (1)
- May 2025 (1)
- March 2025 (2)
- February 2025 (1)
- January 2025 (2)
- December 2024 (1)
- October 2024 (2)
- September 2024 (7)
- August 2024 (4)
- July 2024 (2)
- June 2024 (6)
- May 2024 (3)
- April 2024 (2)
- February 2024 (1)
- January 2024 (11)
- December 2023 (10)
- November 2023 (11)
- October 2023 (10)
- September 2023 (8)
- August 2023 (6)
- July 2023 (2)
- June 2023 (13)
- May 2023 (4)
- April 2023 (6)
- March 2023 (10)
- February 2023 (6)
- January 2023 (5)
- December 2022 (10)
- November 2022 (10)
- October 2022 (10)
- September 2022 (13)
- August 2022 (16)
- July 2022 (12)
- June 2022 (13)
- May 2022 (11)
- April 2022 (4)
- March 2022 (5)
- February 2022 (4)
- January 2022 (14)
- December 2021 (16)
- November 2021 (11)
- October 2021 (6)
- September 2021 (11)
- August 2021 (6)
- July 2021 (9)
- June 2021 (4)
- May 2021 (8)
- April 2021 (16)
- March 2021 (16)
- February 2021 (6)
- January 2021 (12)
- December 2020 (12)
- November 2020 (17)
- October 2020 (11)
- September 2020 (10)
- August 2020 (11)
- July 2020 (13)
- June 2020 (6)
- May 2020 (9)
- April 2020 (18)
- March 2020 (21)
- February 2020 (13)
- January 2020 (15)
- December 2019 (10)
- November 2019 (11)
- October 2019 (12)
- September 2019 (16)
- August 2019 (15)
- July 2019 (10)
- June 2019 (16)
- May 2019 (20)
- April 2019 (21)
- March 2019 (14)
- February 2019 (18)
- January 2019 (18)
- December 2018 (5)
- November 2018 (16)
- October 2018 (12)
- September 2018 (20)
- August 2018 (27)
- July 2018 (31)
- June 2018 (34)
- May 2018 (28)
- April 2018 (27)
- March 2018 (17)
- February 2018 (8)
- January 2018 (20)
- December 2017 (14)
- November 2017 (4)
- October 2017 (1)
- September 2017 (3)
- August 2017 (5)
- July 2017 (4)
- June 2017 (2)
- May 2017 (7)
- April 2017 (7)
- March 2017 (8)
- February 2017 (8)
- January 2017 (5)
- December 2016 (3)
- November 2016 (4)
- October 2016 (8)
- September 2016 (9)
- August 2016 (10)
- July 2016 (9)
- June 2016 (8)
- May 2016 (13)
- April 2016 (16)
- March 2016 (13)
- February 2016 (11)
- January 2016 (6)
- December 2015 (11)
- November 2015 (11)
- October 2015 (5)
- September 2015 (16)
- August 2015 (4)
- July 2015 (1)
- June 2015 (3)
- May 2015 (6)
- April 2015 (5)
- March 2015 (5)
- February 2015 (4)
- January 2015 (3)
- December 2014 (7)
- October 2014 (4)
- September 2014 (6)
- August 2014 (6)
- July 2014 (16)
- June 2014 (7)
- May 2014 (6)
- April 2014 (5)
- March 2014 (4)
- February 2014 (10)
- January 2014 (6)
- December 2013 (8)
- November 2013 (12)
- October 2013 (9)
- September 2013 (6)
- August 2013 (7)
- July 2013 (9)
- June 2013 (7)
- May 2013 (7)
- April 2013 (4)
- March 2013 (7)
- February 2013 (4)
- January 2013 (4)
- December 2012 (6)
- November 2012 (8)
- October 2012 (9)
- September 2012 (3)
- August 2012 (5)
- July 2012 (5)
- June 2012 (7)
- May 2012 (11)
- April 2012 (1)
- March 2012 (8)
- February 2012 (1)
- January 2012 (6)
- December 2011 (8)
- November 2011 (5)
- October 2011 (9)
- September 2011 (6)
- August 2011 (4)
- July 2011 (1)
- June 2011 (1)
- May 2011 (5)
- April 2011 (2)
- February 2011 (2)
- January 2011 (2)
- December 2010 (1)
- November 2010 (7)
- October 2010 (3)
- September 2010 (8)
- August 2010 (2)
- July 2010 (4)
- June 2010 (7)
- May 2010 (2)
- April 2010 (1)
- March 2010 (3)
- February 2010 (3)
- January 2010 (2)
- November 2009 (6)
- October 2009 (6)
- August 2009 (3)
- July 2009 (3)
- June 2009 (3)
- May 2009 (2)
- April 2009 (8)
- March 2009 (6)
- February 2009 (4)
- January 2009 (3)
- November 2008 (3)
- October 2008 (7)
- September 2008 (6)
- August 2008 (9)
- July 2008 (9)
- June 2008 (9)
- May 2008 (9)
- April 2008 (8)
- March 2008 (4)
- February 2008 (3)
- January 2008 (3)
- December 2007 (2)
- November 2007 (7)
- October 2007 (1)
- August 2007 (4)
- July 2007 (3)
- June 2007 (8)
- May 2007 (4)
- April 2007 (2)
- March 2007 (2)
- February 2007 (5)
- January 2007 (8)
- December 2006 (1)
- November 2006 (3)
- October 2006 (4)
- September 2006 (3)
- July 2006 (1)
- May 2006 (2)
- April 2006 (1)
- July 2005 (1)
No Comments Yet
Let us know what you think