Share this
Using AI for database administration automation - extracting useful information from log files
by Gorjan Todorovski on Mar 26, 2018 12:00:00 AM
Intelligent monitoring
What if the monitoring system was a bit smarter and just showed you, on a single page, relevant extracts from all log files/trace files at once? This might be useful to help you quickly understand what is actually going on at the moment and will also help for later root cause analysis.The theory behind it
So one thing I thought might be useful and tried to do a proof-of-concept solution for, is a machine learning/deep learning model called sequence to sequence (seq2seq). This is usually used for language translation, text summarization, speech recognition and automated question answering. My idea is to use in a so-called auto-encoder configuration in this case. As a bit of ML/DL background, at a very high level, sequence models learn sequences (of numbers, text, audio..) and are able to predict the next item in a sequence. Seq2seq model learns to represent a sequence as a lower dimension vector (done by the encoder) while the decoder learns to generate another sequence from that vector. So a translation engine is given a number of sentences (sequences) in one language and another. For an autoencoder we give it the same sentence as a source and as a target, so it basically learns to recreate sentences similar to the ones given during the training. So how is this useful for our log files? The emphasis, in the previous sentence, is it can recreate sequences that it has come across during the training process. So what if we train the model with a log file/trice files while the system was in a normal state/operation? Line by line, it will learn to recreate those lines and lines similar to it. If all of sudden it comes across a line that is very different from anything the model came across during training, it will not be able to recreate it accurately i.e. it will generate a sentence (sequence) that will be vastly different from the original line in the log file it has come across. So this is in a way anomaly detection in a text. We can then compare the source (original) line from the log file and compare it to the one generated by this model, and if we see that it is very different we will report it as an anomaly in the log file. Since the model was trained in a normal state of the system operation, such an anomaly should be something out of ordinary and possibly useful for the troubleshooting. Some of those log lines will have nothing to do with an issue or a problem, they will just be something different and out of norm from the log lines seen during model training so we may need to do additional filtering of those by doing a supervised classification, which would of course require someone to go through such extracts from log files and classify them as being important or not. To make the output more useful, I used a ML clustering algorithm called Mean Shift to automatically group those log lines that happened around the same time (using the timestamp from the log. Grouped like that we can treat those clusters like separate incidents that happened around some time (central point timestamp in the specific cluster of log lines). The grouping can be improved by grouping by some specific words or phrases by using the same algorithm.Basic proof-of-concept implementation
To more rapidly experiment with this I have used the ML/DL service in AWS called SageMaker which offers prebuilt Seq2Seq algorithm which can be used out of the box: I have experimented using the Oracle High Availability Service daemon trace files (ohasd.trc) but it should be able to work on any log/trace file (of course it would need to be trained to “understand” that type of file. Model training SageMaker offers an example Jupyter notebook with all steps required to train and use their Seq2Seq model, so only some steps in that need to be adjusted for it to be used on data you want to for training, but also to create an endpoint which will be used for inference later. We can upload some ohasd.trc file which should be from a time where the system behaved normally without any incidents. We need to split the ohasd.trc file for training and validation:head -n 32750 ohasd.trc > ohasd.trc.train tail -n 8188 ohasd.trc > ohasd.trc.testThen tokenize the trace files (split in separate words and convert them to numbers) so they can be ingested into the se2seq model. AWS provides a python script for that, but I have modified it so it just uses tokens that don’t contain special characters and numbers, so it will be easier for the ML model to be trained on it (have fewer items in the vocabulary and smaller sentences which would be easier for the seq2seq model to recreate):
python3 create_vocab_proto.py
We load the files to S3, so SageMaher can use it.
Create a training job with these parameters can be created and run:
...
create_training_params = { .. "HyperParameters": { "max_seq_len_source": "20", "max_seq_len_target": "20", "optimized_metric": "bleu", "batch_size": "256", "checkpoint_frequency_num_batches": "1000", "rnn_num_hidden": "512", "num_layers_encoder": "3", "num_layers_decoder": "3", "num_embed_source": "512", "num_embed_target": "512", "checkpoint_threshold": "3" ...As seen we are optimizing for the metric BLEU, which is metric used to compare two sentences for their similarity. After creating and running the training job an endpoint can be created so this model can be used over an HTTP request from anywhere, so we would not need to install python ML libraries on the actual database server. The endpoints run on a ec2 instance in the background (which we don’t manage) but we are billed as long as the endpoint is up and running for that ec2 instance.
Some results
Created a script that would read lines from the ohasd.rc file and send them to the created endpoint SageMaker endpoint can be used just as normal REST API call using http. To see if the model being trained would be able to actually filter out some interesting lines from the log, I have intentionally killed the ASM instance by killing some of it’s background processes so it would crash. The algorithm still showed quite a number of log lines, that it thinks are unusual, so to make the output more useful, as mentioned previously, using Mean Shift (used scikit-learn python library). It grouped lines with a nearby timestamp, so basically events that occurred near each other, so supposedly belong to a same incident. Some sample output is shown below. The column “Cluster n:” indicates to which group (cluster) of lines that lines is part of - meaning to which related event, where “n” os the number of that group. Anomalies detected and grouped into Cluster 0 seems not to be something that we might care about so we can additionally training a classifier to just ignore anomalies like that. For “Cluster 2” seems to be the ASM going down. This can be further developed, so the system automatically summarizes in a high level note, what had happened, or even provide some root cause, so when the DBA connects to troubleshoot, he/she will know ehere to start and what is going on:Cluster 0: |ORIG: | 2018-01-02 17:47:21.379 :OHASDMAIN:57868352: OHASD params [] Cluster 0: |ORIG: | 2018-01-02 17:47:21.379 :OHASDMAIN:57868352: Socket cleanup:0x49bde30 Cluster 0: |ORIG: | 2018-01-02 17:47:21.379 :OHASDMAIN:57868352: Got [0] potential names Cluster 0: |ORIG: | 2018-01-02 17:47:21.383 : OCRRAW:57868352: proprioo: for disk 0 (/u01/grid/cdata/localhost/ip-172-31-86-123.olr), id match (1), total id sets, (1) need recover (0), my votes (0), total votes (0), commit_lsn (1), lsn (1) Cluster 0: |ORIG: | 2018-01-02 17:47:21.383 : OCRRAW:57868352: proprioo: my id set: (1777565868, 1028247821, 0, 0, 0) Cluster 0: |ORIG: | 2018-01-02 17:47:21.383 : OCRRAW:57868352: proprioo: 1st set: (1777565868, 1028247821, 0, 0, 0) Cluster 0: |ORIG: | 2018-01-02 17:47:21.383 : OCRRAW:57868352: proprioo: 2nd set: (0, 0, 0, 0, 0) Cluster 0: |ORIG: | 2018-01-02 17:47:21.387 : OCRAPI:57868352: a_init:18: Thread init successful Cluster 0: |ORIG: | 2018-01-02 17:47:21.387 : OCRAPI:57868352: a_init:19: Client init successful Cluster 0: |ORIG: | 2018-01-02 17:47:21.388 :OHASDMAIN:57868352: Version compatibility check passed: Software Version: 12.2.0.1.0 Release Version: 12.2.0.1.0 Active Version: 12.2.0.1.0 Cluster 0: |ORIG: | 2018-01-02 17:47:21.392 : CRSMAIN:57868352: Logging level for Module: GIPCBASE 0 Cluster 0: |ORIG: | 2018-01-02 17:47:21.396 : CRSPE:57868352: ...done : 0 Cluster 0: |ORIG: | 2018-01-02 17:47:21.396 :OHASDMAIN:57868352: Initializing ubglm... Cluster 2: |ORIG: | 2018-02-02 13:00:44.538 : AGFW:2113812224: {0:7:16} Verifying msg rid = ora.asm ip-172-31-86-123 1 Cluster 2: |ORIG: | 2018-02-02 13:00:44.538 : AGFW:2113812224: {0:7:16} Received state LABEL change for ora.asm ip-172-31-86-123 1 [old label = Started, new label = Abnormal Termination] Cluster 2: |ORIG: | 2018-02-02 13:00:44.538 : CRSPE:2101204736: {0:7:16} State change received from ip-172-31-86-123 for ora.asm ip-172-31-86-123 1 Cluster 2: |ORIG: | 2018-02-02 13:00:44.539 : CRSPE:2101204736: {0:7:16} Processing unplanned state change for [ora.asm ip-172-31-86-123 1] Cluster 2: |ORIG: | 2018-02-02 13:00:44.539 : CRSPE:2101204736: {0:7:16} Scheduled local recovery for [ora.asm ip-172-31-86-123 1] Cluster 2: |ORIG: | 2018-02-02 13:00:44.540 : CRSPE:2101204736: {0:7:16} RI [ora.asm ip-172-31-86-123 1] new internal state: [CLEANING] old value: [STABLE] Cluster 2: |ORIG: | 2018-02-02 13:00:44.540 : CRSPE:2101204736: {0:7:16} state change vers moved to 6 for RI:ora.asm ip-172-31-86-123 1 Cluster 2: |ORIG: | 2018-02-02 13:00:44.540 : CRSPE:2101204736: {0:7:16} Sending message to agfw: id = 50979 Cluster 2: |ORIG: | 2018-02-02 13:00:44.540 : CRSPE:2101204736: {0:7:16} CRS-2679: Attempting to clean 'ora.asm' on 'ip-172-31-86-123' Cluster 2: |ORIG: | 2018-02-02 13:00:44.547 : AGFW:2113812224: {0:7:16} ora.orcl.db 1 1 received state from probe request. Old state = ONLINE, New state = ONLINE Cluster 2: |ORIG: | 2018-02-02 13:00:44.547 : AGFW:2113812224: {0:7:16} ora.orcl.db 1 1 received state from probe request. Old state = ONLINE, New state = ONLINE Cluster 2: |ORIG: | 2018-02-02 13:00:44.547 : CRSPE:2101204736: {0:7:17} ora.DATA.dg ip-172-31-86-123 1: uptime exceeds uptime threshold , resetting restart count Cluster 2: |ORIG: | 2018-02-02 13:00:44.547 : CRSPE:2101204736: {0:7:17} Scheduled local recovery for [ora.DATA.dg ip-172-31-86-123 1] Cluster 2: |ORIG: | 2018-02-02 13:00:44.552 : AGFW:2113812224: {0:7:17} ora.orcl.db 1 1 received state from probe request. Old state = ONLINE, New state = ONLINE Cluster 2: |ORIG: | 2018-02-02 13:00:46.551 : AGFW:2113812224: {0:7:18} Verifying msg rid = ora.orcl.db 1 1 Cluster 2: |ORIG: | 2018-02-02 13:00:46.551 : AGFW:2113812224: {0:7:18} Received state LABEL change for ora.orcl.db 1 1 [old label = Open,HOME=/u01/app/oracle/product/12.2.0/db, new label = Abnormal Termination,HOME=/u01/app/oracle/product/12.2.0/db] Cluster 2: |ORIG: | 2018-02-02 13:00:46.552 : CRSPE:2101204736: {0:7:18} State change received from ip-172-31-86-123 for ora.orcl.db 1 1
Share this
- Technical Track (967)
- Oracle (413)
- MySQL (140)
- Cloud (128)
- Microsoft SQL Server (117)
- Open Source (90)
- Google Cloud (81)
- Microsoft Azure (63)
- Amazon Web Services (AWS) (58)
- Big Data (52)
- Google Cloud Platform (46)
- Cassandra (44)
- DevOps (41)
- Pythian (33)
- Linux (30)
- Database (26)
- Performance (25)
- Podcasts (25)
- Site Reliability Engineering (25)
- PostgreSQL (24)
- Oracle E-Business Suite (23)
- Oracle Database (22)
- Docker (21)
- DBA (20)
- Security (20)
- Exadata (18)
- MongoDB (18)
- Oracle Cloud Infrastructure (OCI) (18)
- Oracle Exadata (18)
- Automation (17)
- Hadoop (16)
- Oracleebs (16)
- Amazon RDS (15)
- Ansible (15)
- Snowflake (15)
- ASM (13)
- Artificial Intelligence (AI) (13)
- BigQuery (13)
- Replication (13)
- Advanced Analytics (12)
- Data (12)
- GenAI (12)
- Kubernetes (12)
- LLM (12)
- Authentication, SSO and MFA (11)
- Cloud Migration (11)
- Machine Learning (11)
- Rman (11)
- Datascape Podcast (10)
- Monitoring (10)
- Oracle Applications (10)
- Apache Cassandra (9)
- ChatGPT (9)
- Data Guard (9)
- Infrastructure (9)
- Python (9)
- Series (9)
- AWR (8)
- High Availability (8)
- Oracle EBS (8)
- Oracle Enterprise Manager (OEM) (8)
- Percona (8)
- Apache Beam (7)
- Data Governance (7)
- Innodb (7)
- Microsoft Azure SQL Database (7)
- Migration (7)
- Myrocks (7)
- Performance Tuning (7)
- Data Enablement (6)
- Data Visualization (6)
- Database Performance (6)
- Oracle Enterprise Manager (6)
- Orchestrator (6)
- RocksDB (6)
- Serverless (6)
- Azure Data Factory (5)
- Azure Synapse Analytics (5)
- Covid-19 (5)
- Disaster Recovery (5)
- Generative AI (5)
- Google BigQuery (5)
- Mariadb (5)
- Microsoft (5)
- Scala (5)
- Windows (5)
- Xtrabackup (5)
- Airflow (4)
- Analytics (4)
- Apex (4)
- Cloud Security (4)
- Cloud Spanner (4)
- CockroachDB (4)
- Data Management (4)
- Data Pipeline (4)
- Data Security (4)
- Data Strategy (4)
- Database Administrator (4)
- Database Management (4)
- Database Migration (4)
- Dataflow (4)
- Fusion Middleware (4)
- Google (4)
- Oracle Autonomous Database (Adb) (4)
- Oracle Cloud (4)
- Prometheus (4)
- Redhat (4)
- Slob (4)
- Ssl (4)
- Terraform (4)
- Amazon Relational Database Service (Rds) (3)
- Apache Kafka (3)
- Apexexport (3)
- Aurora (3)
- Business Intelligence (3)
- Cloud Armor (3)
- Cloud Database (3)
- Cloud FinOps (3)
- Cosmos Db (3)
- Data Analytics (3)
- Data Integration (3)
- Database Monitoring (3)
- Database Troubleshooting (3)
- Database Upgrade (3)
- Databases (3)
- Dataops (3)
- Digital Transformation (3)
- ERP (3)
- Google Chrome (3)
- Google Cloud Sql (3)
- Google Workspace (3)
- Graphite (3)
- Heterogeneous Database Migration (3)
- Liquibase (3)
- Oracle Data Guard (3)
- Oracle Live Sql (3)
- Oracle Rac (3)
- Perl (3)
- Rdbms (3)
- Remote Teams (3)
- S3 (3)
- SAP (3)
- Tensorflow (3)
- Adf (2)
- Adop (2)
- Amazon Data Migration Service (2)
- Amazon Ec2 (2)
- Amazon S3 (2)
- Apache Flink (2)
- Ashdump (2)
- Atp (2)
- Autonomous (2)
- Awr Data Mining (2)
- Cloud Cost Optimization (2)
- Cloud Data Fusion (2)
- Cloud Hosting (2)
- Cloud Infrastructure (2)
- Cloud Shell (2)
- Cloud Sql (2)
- Conferences (2)
- Cosmosdb (2)
- Cost Management (2)
- Cyber Security (2)
- Data Analysis (2)
- Data Discovery (2)
- Data Engineering (2)
- Data Migration (2)
- Data Modeling (2)
- Data Quality (2)
- Data Streaming (2)
- Data Warehouse (2)
- Database Consulting (2)
- Database Migrations (2)
- Dataguard (2)
- Docker-Composer (2)
- Enterprise Data Platform (EDP) (2)
- Etl (2)
- Events (2)
- Gemini (2)
- Health Check (2)
- Infrastructure As Code (2)
- Innodb Cluster (2)
- Innodb File Structure (2)
- Innodb Group Replication (2)
- NLP (2)
- Neo4J (2)
- Nosql (2)
- Open Source Database (2)
- Oracle Datase (2)
- Oracle Extended Manager (Oem) (2)
- Oracle Flashback (2)
- Oracle Forms (2)
- Oracle Installation (2)
- Oracle Io Testing (2)
- Podcast (2)
- Power Bi (2)
- Redshift (2)
- Remote DBA (2)
- Remote Sre (2)
- SAP HANA Cloud (2)
- Single Sign-On (2)
- Webinars (2)
- X5 (2)
- Actifio (1)
- Adf Custom Email (1)
- Adrci (1)
- Advanced Data Services (1)
- Afd (1)
- Ahf (1)
- Alloydb (1)
- Amazon (1)
- Amazon Athena (1)
- Amazon Aurora Backtrack (1)
- Amazon Efs (1)
- Amazon Redshift (1)
- Amazon Sagemaker (1)
- Amazon Vpc Flow Logs (1)
- Analysis (1)
- Analytical Models (1)
- Anisble (1)
- Anthos (1)
- Apache (1)
- Apache Nifi (1)
- Apache Spark (1)
- Application Migration (1)
- Ash (1)
- Asmlib (1)
- Atlas CLI (1)
- Awr Mining (1)
- Aws Lake Formation (1)
- Azure Data Lake (1)
- Azure Data Lake Analytics (1)
- Azure Data Lake Store (1)
- Azure Data Migration Service (1)
- Azure OpenAI (1)
- Azure Sql Data Warehouse (1)
- Batches In Cassandra (1)
- Business Insights (1)
- Chown (1)
- Chrome Security (1)
- Cloud Browser (1)
- Cloud Build (1)
- Cloud Consulting (1)
- Cloud Data Warehouse (1)
- Cloud Database Management (1)
- Cloud Dataproc (1)
- Cloud Foundry (1)
- Cloud Manager (1)
- Cloud Networking (1)
- Cloud SQL Replica (1)
- Cloud Scheduler (1)
- Cloud Services (1)
- Cloud Strategies (1)
- Compliance (1)
- Conversational AI (1)
- DAX (1)
- Data Analytics Platform (1)
- Data Box (1)
- Data Classification (1)
- Data Cleansing (1)
- Data Encryption (1)
- Data Estate (1)
- Data Flow Management (1)
- Data Insights (1)
- Data Integrity (1)
- Data Lake (1)
- Data Leader (1)
- Data Lifecycle Management (1)
- Data Lineage (1)
- Data Masking (1)
- Data Mesh (1)
- Data Migration Assistant (1)
- Data Migration Service (1)
- Data Mining (1)
- Data Monetization (1)
- Data Policy (1)
- Data Profiling (1)
- Data Protection (1)
- Data Retention (1)
- Data Safe (1)
- Data Sheets (1)
- Data Summit (1)
- Data Vault (1)
- Data Warehouse Modernization (1)
- Database Auditing (1)
- Database Consultant (1)
- Database Link (1)
- Database Modernization (1)
- Database Provisioning (1)
- Database Provisioning Failed (1)
- Database Replication (1)
- Database Scaling (1)
- Database Schemas (1)
- Database Security (1)
- Databricks (1)
- Datascape 59 (1)
- DeepSeek (1)
- Duet AI (1)
- Edp (1)
- Gcp Compute (1)
- Gcp-Spanner (1)
- Global Analytics (1)
- Google Analytics (1)
- Google Cloud Architecture Framework (1)
- Google Cloud Data Services (1)
- Google Cloud Partner (1)
- Google Cloud Spanner (1)
- Google Cloud VMware Engine (1)
- Google Compute Engine (1)
- Google Dataflow (1)
- Google Datalab (1)
- Google Grab And Go (1)
- Graph Algorithms (1)
- Graph Databases (1)
- Graph Inferences (1)
- Graph Theory (1)
- GraphQL (1)
- Healthcheck (1)
- Information (1)
- Infrastructure As A Code (1)
- Innobackupex (1)
- Innodb Concurrency (1)
- Innodb Flush Method (1)
- It Industry (1)
- Kubeflow (1)
- LMSYS Chatbot Arena (1)
- Linux Host Monitoring (1)
- Linux Storage Appliance (1)
- Looker (1)
- MMLU (1)
- Managed Services (1)
- Migrate (1)
- Migrating Ssis Catalog (1)
- Migration Checklist (1)
- MongoDB Atlas (1)
- MongoDB Compass (1)
- Newsroom (1)
- Nifi (1)
- OPEX (1)
- ORAPKI (1)
- Odbcs (1)
- Odbs (1)
- On-Premises (1)
- Ora-01852 (1)
- Ora-7445 (1)
- Oracle Cursor (1)
- Oracle Database Appliance (1)
- Oracle Database Se2 (1)
- Oracle Database Standard Edition 2 (1)
- Oracle Database Upgrade (1)
- Oracle Database@Google Cloud (1)
- Oracle Exadata Smart Scan (1)
- Oracle Licensing (1)
- Oracle Linux Virtualization Manager (1)
- Oracle Oda (1)
- Oracle Openworld (1)
- Oracle Parallelism (1)
- Oracle RMAN (1)
- Oracle Rdbms (1)
- Oracle Real Application Clusters (1)
- Oracle Reports (1)
- Oracle Security (1)
- Oracle Wallet (1)
- PDB (1)
- Perfomrance (1)
- Performance Schema (1)
- Policy (1)
- Prompt Engineering (1)
- Public Cloud (1)
- Pythian News (1)
- Rdb (1)
- Replication Compatibility (1)
- Replication Error (1)
- Retail (1)
- Scaling Ir (1)
- Securing Sql Server (1)
- Security Compliance (1)
- Serverless Computing (1)
- Sso (1)
- Tenserflow (1)
- Teradata (1)
- Vertex AI (1)
- Vertica (1)
- Videos (1)
- Workspace Security (1)
- Xbstream (1)
- July 2025 (2)
- June 2025 (1)
- May 2025 (3)
- March 2025 (2)
- February 2025 (1)
- January 2025 (2)
- December 2024 (1)
- October 2024 (2)
- September 2024 (7)
- August 2024 (4)
- July 2024 (2)
- June 2024 (6)
- May 2024 (3)
- April 2024 (2)
- February 2024 (1)
- January 2024 (11)
- December 2023 (10)
- November 2023 (11)
- October 2023 (10)
- September 2023 (8)
- August 2023 (6)
- July 2023 (2)
- June 2023 (13)
- May 2023 (4)
- April 2023 (6)
- March 2023 (10)
- February 2023 (6)
- January 2023 (5)
- December 2022 (10)
- November 2022 (10)
- October 2022 (10)
- September 2022 (13)
- August 2022 (16)
- July 2022 (12)
- June 2022 (13)
- May 2022 (11)
- April 2022 (4)
- March 2022 (5)
- February 2022 (4)
- January 2022 (14)
- December 2021 (16)
- November 2021 (11)
- October 2021 (6)
- September 2021 (11)
- August 2021 (6)
- July 2021 (9)
- June 2021 (4)
- May 2021 (8)
- April 2021 (16)
- March 2021 (16)
- February 2021 (6)
- January 2021 (12)
- December 2020 (12)
- November 2020 (17)
- October 2020 (11)
- September 2020 (10)
- August 2020 (11)
- July 2020 (13)
- June 2020 (6)
- May 2020 (9)
- April 2020 (18)
- March 2020 (21)
- February 2020 (13)
- January 2020 (15)
- December 2019 (10)
- November 2019 (11)
- October 2019 (12)
- September 2019 (16)
- August 2019 (15)
- July 2019 (10)
- June 2019 (16)
- May 2019 (20)
- April 2019 (21)
- March 2019 (14)
- February 2019 (18)
- January 2019 (18)
- December 2018 (5)
- November 2018 (16)
- October 2018 (12)
- September 2018 (20)
- August 2018 (27)
- July 2018 (31)
- June 2018 (34)
- May 2018 (28)
- April 2018 (27)
- March 2018 (17)
- February 2018 (8)
- January 2018 (20)
- December 2017 (14)
- November 2017 (4)
- October 2017 (1)
- September 2017 (3)
- August 2017 (5)
- July 2017 (4)
- June 2017 (2)
- May 2017 (7)
- April 2017 (7)
- March 2017 (8)
- February 2017 (8)
- January 2017 (5)
- December 2016 (3)
- November 2016 (4)
- October 2016 (8)
- September 2016 (9)
- August 2016 (10)
- July 2016 (9)
- June 2016 (8)
- May 2016 (13)
- April 2016 (16)
- March 2016 (13)
- February 2016 (11)
- January 2016 (6)
- December 2015 (11)
- November 2015 (11)
- October 2015 (5)
- September 2015 (16)
- August 2015 (4)
- July 2015 (1)
- June 2015 (3)
- May 2015 (6)
- April 2015 (5)
- March 2015 (5)
- February 2015 (4)
- January 2015 (3)
- December 2014 (7)
- October 2014 (4)
- September 2014 (6)
- August 2014 (6)
- July 2014 (16)
- June 2014 (7)
- May 2014 (6)
- April 2014 (5)
- March 2014 (4)
- February 2014 (10)
- January 2014 (6)
- December 2013 (8)
- November 2013 (12)
- October 2013 (9)
- September 2013 (6)
- August 2013 (7)
- July 2013 (9)
- June 2013 (7)
- May 2013 (7)
- April 2013 (4)
- March 2013 (7)
- February 2013 (4)
- January 2013 (4)
- December 2012 (6)
- November 2012 (8)
- October 2012 (9)
- September 2012 (3)
- August 2012 (5)
- July 2012 (5)
- June 2012 (7)
- May 2012 (11)
- April 2012 (1)
- March 2012 (8)
- February 2012 (1)
- January 2012 (6)
- December 2011 (8)
- November 2011 (5)
- October 2011 (9)
- September 2011 (6)
- August 2011 (4)
- July 2011 (1)
- June 2011 (1)
- May 2011 (5)
- April 2011 (2)
- February 2011 (2)
- January 2011 (2)
- December 2010 (1)
- November 2010 (7)
- October 2010 (3)
- September 2010 (8)
- August 2010 (2)
- July 2010 (4)
- June 2010 (7)
- May 2010 (2)
- April 2010 (1)
- March 2010 (3)
- February 2010 (3)
- January 2010 (2)
- November 2009 (6)
- October 2009 (6)
- August 2009 (3)
- July 2009 (3)
- June 2009 (3)
- May 2009 (2)
- April 2009 (8)
- March 2009 (6)
- February 2009 (4)
- January 2009 (3)
- November 2008 (3)
- October 2008 (7)
- September 2008 (6)
- August 2008 (9)
- July 2008 (9)
- June 2008 (9)
- May 2008 (9)
- April 2008 (8)
- March 2008 (4)
- February 2008 (3)
- January 2008 (3)
- December 2007 (2)
- November 2007 (7)
- October 2007 (1)
- August 2007 (4)
- July 2007 (3)
- June 2007 (8)
- May 2007 (4)
- April 2007 (2)
- March 2007 (2)
- February 2007 (5)
- January 2007 (8)
- December 2006 (1)
- November 2006 (3)
- October 2006 (4)
- September 2006 (3)
- July 2006 (1)
- May 2006 (2)
- April 2006 (1)
- July 2005 (1)
No Comments Yet
Let us know what you think