Share this
Virtual CPUs with Amazon Web Services
by Pythian Marketing on Jun 24, 2014 12:00:00 AM
Some months ago, Amazon Web Services changed the way they measure CPU capacity on their EC2 compute platform. In addition to the old ECUs, there is a new unit to measure compute capacity: vCPUs. The instance type page defines a vCPU as “a hyperthreaded core for M3, C3, R3, HS1, G2, and I2.” The description seems a bit confusing: is it a dedicated CPU core (which has two hyperthreads in the E5-2670 v2 CPU platform being used), or is it a half-core, single hyperthread?
I decided to test this out for myself by setting up one of the new-generation m3.xlarge instances (with thanks to Christo for technical assistance). It is stated to have 4 vCPUs running E5-2670 v2 processor at 2.5GHz on the Ivy Bridge-EP microarchitecture (or sometimes 2.6GHz in the case of xlarge instances).
Investigating for ourselves
I’m going to use paravirtualized Amazon Linux 64-bit for simplicity:
$ ec2-describe-images ami-fb8e9292 -H Type ImageID Name Owner State Accessibility ProductCodes Architecture ImageType KernelId RamdiskId Platform RootDeviceType VirtualizationType Hypervisor IMAGE ami-fb8e9292 amazon/amzn-ami-pv-2014.03.1.x86_64-ebs amazon available public x86_64 machine aki-919dcaf8 ebs paravirtual xen BLOCKDEVICEMAPPING /dev/sda1 snap-b047276d 8
Launching the instance:
$ ec2-run-instances ami-fb8e9292 -k marc-aws --instance-type m3.xlarge --availability-zone us-east-1d RESERVATION r-cde66bb3 462281317311 default INSTANCE i-b5f5a2e6 ami-fb8e9292 pending marc-aws 0 m3.xlarge 2014-06-16T20:23:48+0000 us-east-1d aki-919dcaf8 monitoring-disabled ebs paravirtual xen sg-5fc61437 default
The instance is up and running within a few minutes:
$ ec2-describe-instances i-b5f5a2e6 -H Type ReservationID Owner Groups Platform RESERVATION r-cde66bb3 462281317311 default INSTANCE i-b5f5a2e6 ami-fb8e9292 ec2-54-242-182-88.compute-1.amazonaws.com ip-10-145-209-67.ec2.internal running marc-aws 0 m3.xlarge 2014-06-16T20:23:48+0000 us-east-1d aki-919dcaf8 monitoring-disabled 54.242.182.88 10.145.209.67 ebs paravirtual xen sg-5fc61437 default BLOCKDEVICE /dev/sda1 vol-1633ed53 2014-06-16T20:23:52.000Z true
Logging in as ec2-user. First of all, let’s see what /proc/cpuinfo says:
[ec2-user@ip-10-7-160-199 ~]$ egrep '(processor|model name|cpu MHz|physical id|siblings|core id|cpu cores)' /proc/cpuinfo processor : 0 model name : Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz cpu MHz : 2599.998 physical id : 0 siblings : 4 core id : 0 cpu cores : 1 processor : 1 model name : Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz cpu MHz : 2599.998 physical id : 0 siblings : 4 core id : 0 cpu cores : 1 processor : 2 model name : Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz cpu MHz : 2599.998 physical id : 0 siblings : 4 core id : 0 cpu cores : 1 processor : 3 model name : Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz cpu MHz : 2599.998 physical id : 0 siblings : 4 core id : 0 cpu cores : 1
Looks like I got some of the slightly faster 2.6GHz CPUs. /proc/cpuinfo shows four processors, each with physical id 0 and core id 0. Or in other words, one single-core processor with 4 threads. We know that the E5-2670 v2 processor is actually a 10-core processor, so the information we see at the OS level is not quite corresponding.
Nevertheless, we’ll proceed with a few simple tests. I’m going to run “gzip”, an integer-compute-intensive compression test, on 2.2GB of zeroes from /dev/zero. By using synthetic input and discarding output, we can avoid effects of disk I/O. I’m going to combine this test with taskset comments to impose processor affinity on the process.
A simple test
The simplest case: a single thread, on processor 0:
[ec2-user@ip-10-7-160-199 ~]$ taskset -pc 0 $$ pid 1531's current affinity list: 0-3 pid 1531's new affinity list: 0 [ec2-user@ip-10-7-160-199 ~]$ dd if=/dev/zero bs=1M count=2070 2> >(grep bytes >&2 ) | gzip -c > /dev/null 2170552320 bytes (2.2 GB) copied, 17.8837 s, 121 MB/s
With the single processor, we can process 121 MB/sec. Let’s try running two gzips at once. Sharing a single processor, we should see half the throughput.
[ec2-user@ip-10-7-160-199 ~]$ for i in {1..2}; do dd if=/dev/zero bs=1M count=2070 2> >(grep bytes >&2 ) | gzip -c > /dev/null & done 2170552320 bytes (2.2 GB) copied, 35.8279 s, 60.6 MB/s 2170552320 bytes (2.2 GB) copied, 35.8666 s, 60.5 MB/s
Sharing those cores
Now, let’s make things more interesting: two threads, on adjacent processors. If they are truly dedicated CPU cores, we should get a full 121 MB/s each. If our processors are in fact hyperthreads, we’ll see throughput drop.
[ec2-user@ip-10-7-160-199 ~]$ taskset -pc 0,1 $$ pid 1531's current affinity list: 0 pid 1531's new affinity list: 0,1 [ec2-user@ip-10-7-160-199 ~]$ for i in {1..2}; do dd if=/dev/zero bs=1M count=2070 2> >(grep bytes >&2 ) | gzip -c > /dev/null & done 2170552320 bytes (2.2 GB) copied, 27.1704 s, 79.9 MB/s 2170552320 bytes (2.2 GB) copied, 27.1687 s, 79.9 MB/s
We have our answer: throughput has dropped by a third, to 79.9 MB/sec, showing that processors 0 and 1 are threads sharing a single core. (But note that Hyperthreading is giving performance benefits here: 79.9 MB/s on a shared core is higher than then 60.5 MB/s we see when sharing a single hyperthread.)
Trying the exact same test, but this time, non-adjacent processors 0 and 2:
[ec2-user@ip-10-7-160-199 ~]$ taskset -pc 0,2 $$ pid 1531's current affinity list: 0,1 pid 1531's new affinity list: 0,2 [ec2-user@ip-10-7-160-199 ~]$ for i in {1..2}; do dd if=/dev/zero bs=1M count=2070 2> >(grep bytes >&2 ) | gzip -c > /dev/null & done 2170552320 bytes (2.2 GB) copied, 17.8967 s, 121 MB/s 2170552320 bytes (2.2 GB) copied, 17.8982 s, 121 MB/s
All the way up to full-speed, showing dedicated cores.
What does this all mean? Let’s go back to the Amazon’s vCPU definition
Each vCPU is a hyperthreaded core
As our tests have shown, a vCPU is most definitely not a core. It’s a half of a shared core, or one hyperthread.
A side effect: inconsistent performance
There’s another issue at play here too: the shared-core behavior is hidden from the operating system. Going back to /proc/cpuinfo:
[ec2-user@ip-10-7-160-199 ~]$ grep 'core id' /proc/cpuinfo core id : 0 core id : 0 core id : 0 core id : 0
This means that the OS scheduler has no way of knowing which processors have shared cores, and can not schedule tasks around it. Let’s go back to our two-thread test, but instead of restricting it to two specific processors, we’ll let it run on any of them.
[ec2-user@ip-10-7-160-199 ~]$ taskset -pc 0-3 $$ pid 1531's current affinity list: 0,2 pid 1531's new affinity list: 0-3 [ec2-user@ip-10-7-160-199 ~]$ for i in {1..2}; do dd if=/dev/zero bs=1M count=2070 2> >(grep bytes >&2 ) | gzip -c > /dev/null & done 2170552320 bytes (2.2 GB) copied, 18.041 s, 120 MB/s 2170552320 bytes (2.2 GB) copied, 18.0451 s, 120 MB/s [ec2-user@ip-10-7-160-199 ~]$ for i in {1..2}; do dd if=/dev/zero bs=1M count=2070 2> >(grep bytes >&2 ) | gzip -c > /dev/null & done 2170552320 bytes (2.2 GB) copied, 21.2189 s, 102 MB/s 2170552320 bytes (2.2 GB) copied, 21.2215 s, 102 MB/s [ec2-user@ip-10-7-160-199 ~]$ for i in {1..2}; do dd if=/dev/zero bs=1M count=2070 2> >(grep bytes >&2 ) | gzip -c > /dev/null & done 2170552320 bytes (2.2 GB) copied, 26.2199 s, 82.8 MB/s 2170552320 bytes (2.2 GB) copied, 26.22 s, 82.8 MB/s
We see throughput varying between 82 MB/sec and 120 MB/sec, for the exact same workload. To get some more performance information, we’ll configure top to run 10-second samples with per-processor usage information:
[ec2-user@ip-10-7-160-199 ~]$ cat > ~/.toprc <<-EOF RCfile for "top with windows" # shameless braggin' Id:a, Mode_altscr=0, Mode_irixps=1, Delay_time=3.000, Curwin=0 Def fieldscur=AEHIOQTWKNMbcdfgjplrsuvyzX winflags=25913, sortindx=10, maxtasks=2 summclr=1, msgsclr=1, headclr=3, taskclr=1 Job fieldscur=ABcefgjlrstuvyzMKNHIWOPQDX winflags=62777, sortindx=0, maxtasks=0 summclr=6, msgsclr=6, headclr=7, taskclr=6 Mem fieldscur=ANOPQRSTUVbcdefgjlmyzWHIKX winflags=62777, sortindx=13, maxtasks=0 summclr=5, msgsclr=5, headclr=4, taskclr=5 Usr fieldscur=ABDECGfhijlopqrstuvyzMKNWX winflags=62777, sortindx=4, maxtasks=0 summclr=3, msgsclr=3, headclr=2, taskclr=3 EOF [ec2-user@ip-10-7-160-199 ~]$ top -b -n10 -U ec2-user top - 21:07:50 up 43 min, 2 users, load average: 0.55, 0.45, 0.36 Tasks: 86 total, 4 running, 82 sleeping, 0 stopped, 0 zombie Cpu0 : 96.7%us, 3.3%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu1 : 0.0%us, 1.4%sy, 0.0%ni, 97.9%id, 0.0%wa, 0.3%hi, 0.0%si, 0.3%st Cpu2 : 96.0%us, 4.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu3 : 0.0%us, 1.0%sy, 0.0%ni, 97.9%id, 0.0%wa, 0.7%hi, 0.0%si, 0.3%st PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 1766 ec2-user 20 0 4444 608 400 R 99.7 0.0 0:06.08 gzip 1768 ec2-user 20 0 4444 608 400 R 99.7 0.0 0:06.08 gzip
Here two non-adjacent CPUs are in use. But 3 seconds later, the processes are running on adjacent CPUs:
top - 21:07:53 up 43 min, 2 users, load average: 0.55, 0.45, 0.36 Tasks: 86 total, 4 running, 82 sleeping, 0 stopped, 0 zombie Cpu0 : 96.3%us, 3.7%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu1 : 96.0%us, 3.6%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.3%hi, 0.0%si, 0.0%st Cpu2 : 0.0%us, 0.0%sy, 0.0%ni, 99.3%id, 0.0%wa, 0.3%hi, 0.0%si, 0.3%st Cpu3 : 0.3%us, 0.0%sy, 0.0%ni, 99.3%id, 0.0%wa, 0.0%hi, 0.0%si, 0.3%st PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 1766 ec2-user 20 0 4444 608 400 R 99.7 0.0 0:09.08 gzip 1768 ec2-user 20 0 4444 608 400 R 99.7 0.0 0:09.08 gzip
Although usage percentages are similar, we’ve seen earlier that throughput drops by a third when cores are shared, and we see varied throughput as the processes are context-switched between processors.
This type of situation arises where compute-intensive workloads are running, and when there are fewer processes than total CPU threads. And if only AWS would report correct core IDs to the system, this problem wouldn’t happen: the OS scheduler would make sure processes did not share cores unless necessary.
Here’s a chart summarizing the results:
Summing up
Over the course of the testing I’ve learned two things:
- A vCPU in an AWS environment actually represents only half a physical core. So if you’re looking for equivalent compute capacity to, say, an 8-core server, you would need a so-called 4xlarge EC2 instance with 16 vCPUs. So take it into account in your costing models!
- The mislabeling of the CPU threads as separate single-core processors can result in performance variability as processes are switched between threads. This is something the AWS and/or Xen teams should be able to fix in the kernel.
Readers: what has been your experience with CPU performance in AWS? If any of you has access to a physical machine running E5-2670 processors, it would be interesting to see how the simple gzip test runs.
Share this
- Technical Track (967)
- Oracle (413)
- MySQL (140)
- Cloud (128)
- Microsoft SQL Server (117)
- Open Source (90)
- Google Cloud (81)
- Microsoft Azure (63)
- Amazon Web Services (AWS) (58)
- Big Data (52)
- Google Cloud Platform (46)
- Cassandra (44)
- DevOps (41)
- Pythian (33)
- Linux (30)
- Database (26)
- Performance (25)
- Podcasts (25)
- Site Reliability Engineering (25)
- PostgreSQL (24)
- Oracle E-Business Suite (23)
- Oracle Database (22)
- Docker (21)
- DBA (20)
- Security (20)
- Exadata (18)
- MongoDB (18)
- Oracle Cloud Infrastructure (OCI) (18)
- Oracle Exadata (18)
- Automation (17)
- Hadoop (16)
- Oracleebs (16)
- Amazon RDS (15)
- Ansible (15)
- Snowflake (15)
- ASM (13)
- Artificial Intelligence (AI) (13)
- BigQuery (13)
- Replication (13)
- Advanced Analytics (12)
- Data (12)
- GenAI (12)
- Kubernetes (12)
- LLM (12)
- Authentication, SSO and MFA (11)
- Cloud Migration (11)
- Machine Learning (11)
- Rman (11)
- Datascape Podcast (10)
- Monitoring (10)
- Oracle Applications (10)
- Apache Cassandra (9)
- ChatGPT (9)
- Data Guard (9)
- Infrastructure (9)
- Python (9)
- Series (9)
- AWR (8)
- High Availability (8)
- Oracle EBS (8)
- Oracle Enterprise Manager (OEM) (8)
- Percona (8)
- Apache Beam (7)
- Data Governance (7)
- Innodb (7)
- Microsoft Azure SQL Database (7)
- Migration (7)
- Myrocks (7)
- Performance Tuning (7)
- Data Enablement (6)
- Data Visualization (6)
- Database Performance (6)
- Oracle Enterprise Manager (6)
- Orchestrator (6)
- RocksDB (6)
- Serverless (6)
- Azure Data Factory (5)
- Azure Synapse Analytics (5)
- Covid-19 (5)
- Disaster Recovery (5)
- Generative AI (5)
- Google BigQuery (5)
- Mariadb (5)
- Microsoft (5)
- Scala (5)
- Windows (5)
- Xtrabackup (5)
- Airflow (4)
- Analytics (4)
- Apex (4)
- Cloud Security (4)
- Cloud Spanner (4)
- CockroachDB (4)
- Data Management (4)
- Data Pipeline (4)
- Data Security (4)
- Data Strategy (4)
- Database Administrator (4)
- Database Management (4)
- Database Migration (4)
- Dataflow (4)
- Fusion Middleware (4)
- Google (4)
- Oracle Autonomous Database (Adb) (4)
- Oracle Cloud (4)
- Prometheus (4)
- Redhat (4)
- Slob (4)
- Ssl (4)
- Terraform (4)
- Amazon Relational Database Service (Rds) (3)
- Apache Kafka (3)
- Apexexport (3)
- Aurora (3)
- Business Intelligence (3)
- Cloud Armor (3)
- Cloud Database (3)
- Cloud FinOps (3)
- Cosmos Db (3)
- Data Analytics (3)
- Data Integration (3)
- Database Monitoring (3)
- Database Troubleshooting (3)
- Database Upgrade (3)
- Databases (3)
- Dataops (3)
- Digital Transformation (3)
- ERP (3)
- Google Chrome (3)
- Google Cloud Sql (3)
- Google Workspace (3)
- Graphite (3)
- Heterogeneous Database Migration (3)
- Liquibase (3)
- Oracle Data Guard (3)
- Oracle Live Sql (3)
- Oracle Rac (3)
- Perl (3)
- Rdbms (3)
- Remote Teams (3)
- S3 (3)
- SAP (3)
- Tensorflow (3)
- Adf (2)
- Adop (2)
- Amazon Data Migration Service (2)
- Amazon Ec2 (2)
- Amazon S3 (2)
- Apache Flink (2)
- Ashdump (2)
- Atp (2)
- Autonomous (2)
- Awr Data Mining (2)
- Cloud Cost Optimization (2)
- Cloud Data Fusion (2)
- Cloud Hosting (2)
- Cloud Infrastructure (2)
- Cloud Shell (2)
- Cloud Sql (2)
- Conferences (2)
- Cosmosdb (2)
- Cost Management (2)
- Cyber Security (2)
- Data Analysis (2)
- Data Discovery (2)
- Data Engineering (2)
- Data Migration (2)
- Data Modeling (2)
- Data Quality (2)
- Data Streaming (2)
- Data Warehouse (2)
- Database Consulting (2)
- Database Migrations (2)
- Dataguard (2)
- Docker-Composer (2)
- Enterprise Data Platform (EDP) (2)
- Etl (2)
- Events (2)
- Gemini (2)
- Health Check (2)
- Infrastructure As Code (2)
- Innodb Cluster (2)
- Innodb File Structure (2)
- Innodb Group Replication (2)
- NLP (2)
- Neo4J (2)
- Nosql (2)
- Open Source Database (2)
- Oracle Datase (2)
- Oracle Extended Manager (Oem) (2)
- Oracle Flashback (2)
- Oracle Forms (2)
- Oracle Installation (2)
- Oracle Io Testing (2)
- Podcast (2)
- Power Bi (2)
- Redshift (2)
- Remote DBA (2)
- Remote Sre (2)
- SAP HANA Cloud (2)
- Single Sign-On (2)
- Webinars (2)
- X5 (2)
- Actifio (1)
- Adf Custom Email (1)
- Adrci (1)
- Advanced Data Services (1)
- Afd (1)
- Ahf (1)
- Alloydb (1)
- Amazon (1)
- Amazon Athena (1)
- Amazon Aurora Backtrack (1)
- Amazon Efs (1)
- Amazon Redshift (1)
- Amazon Sagemaker (1)
- Amazon Vpc Flow Logs (1)
- Analysis (1)
- Analytical Models (1)
- Anisble (1)
- Anthos (1)
- Apache (1)
- Apache Nifi (1)
- Apache Spark (1)
- Application Migration (1)
- Ash (1)
- Asmlib (1)
- Atlas CLI (1)
- Awr Mining (1)
- Aws Lake Formation (1)
- Azure Data Lake (1)
- Azure Data Lake Analytics (1)
- Azure Data Lake Store (1)
- Azure Data Migration Service (1)
- Azure OpenAI (1)
- Azure Sql Data Warehouse (1)
- Batches In Cassandra (1)
- Business Insights (1)
- Chown (1)
- Chrome Security (1)
- Cloud Browser (1)
- Cloud Build (1)
- Cloud Consulting (1)
- Cloud Data Warehouse (1)
- Cloud Database Management (1)
- Cloud Dataproc (1)
- Cloud Foundry (1)
- Cloud Manager (1)
- Cloud Networking (1)
- Cloud SQL Replica (1)
- Cloud Scheduler (1)
- Cloud Services (1)
- Cloud Strategies (1)
- Compliance (1)
- Conversational AI (1)
- DAX (1)
- Data Analytics Platform (1)
- Data Box (1)
- Data Classification (1)
- Data Cleansing (1)
- Data Encryption (1)
- Data Estate (1)
- Data Flow Management (1)
- Data Insights (1)
- Data Integrity (1)
- Data Lake (1)
- Data Leader (1)
- Data Lifecycle Management (1)
- Data Lineage (1)
- Data Masking (1)
- Data Mesh (1)
- Data Migration Assistant (1)
- Data Migration Service (1)
- Data Mining (1)
- Data Monetization (1)
- Data Policy (1)
- Data Profiling (1)
- Data Protection (1)
- Data Retention (1)
- Data Safe (1)
- Data Sheets (1)
- Data Summit (1)
- Data Vault (1)
- Data Warehouse Modernization (1)
- Database Auditing (1)
- Database Consultant (1)
- Database Link (1)
- Database Modernization (1)
- Database Provisioning (1)
- Database Provisioning Failed (1)
- Database Replication (1)
- Database Scaling (1)
- Database Schemas (1)
- Database Security (1)
- Databricks (1)
- Datascape 59 (1)
- DeepSeek (1)
- Duet AI (1)
- Edp (1)
- Gcp Compute (1)
- Gcp-Spanner (1)
- Global Analytics (1)
- Google Analytics (1)
- Google Cloud Architecture Framework (1)
- Google Cloud Data Services (1)
- Google Cloud Partner (1)
- Google Cloud Spanner (1)
- Google Cloud VMware Engine (1)
- Google Compute Engine (1)
- Google Dataflow (1)
- Google Datalab (1)
- Google Grab And Go (1)
- Graph Algorithms (1)
- Graph Databases (1)
- Graph Inferences (1)
- Graph Theory (1)
- GraphQL (1)
- Healthcheck (1)
- Information (1)
- Infrastructure As A Code (1)
- Innobackupex (1)
- Innodb Concurrency (1)
- Innodb Flush Method (1)
- It Industry (1)
- Kubeflow (1)
- LMSYS Chatbot Arena (1)
- Linux Host Monitoring (1)
- Linux Storage Appliance (1)
- Looker (1)
- MMLU (1)
- Managed Services (1)
- Migrate (1)
- Migrating Ssis Catalog (1)
- Migration Checklist (1)
- MongoDB Atlas (1)
- MongoDB Compass (1)
- Newsroom (1)
- Nifi (1)
- OPEX (1)
- ORAPKI (1)
- Odbcs (1)
- Odbs (1)
- On-Premises (1)
- Ora-01852 (1)
- Ora-7445 (1)
- Oracle Cursor (1)
- Oracle Database Appliance (1)
- Oracle Database Se2 (1)
- Oracle Database Standard Edition 2 (1)
- Oracle Database Upgrade (1)
- Oracle Database@Google Cloud (1)
- Oracle Exadata Smart Scan (1)
- Oracle Licensing (1)
- Oracle Linux Virtualization Manager (1)
- Oracle Oda (1)
- Oracle Openworld (1)
- Oracle Parallelism (1)
- Oracle RMAN (1)
- Oracle Rdbms (1)
- Oracle Real Application Clusters (1)
- Oracle Reports (1)
- Oracle Security (1)
- Oracle Wallet (1)
- PDB (1)
- Perfomrance (1)
- Performance Schema (1)
- Policy (1)
- Prompt Engineering (1)
- Public Cloud (1)
- Pythian News (1)
- Rdb (1)
- Replication Compatibility (1)
- Replication Error (1)
- Retail (1)
- Scaling Ir (1)
- Securing Sql Server (1)
- Security Compliance (1)
- Serverless Computing (1)
- Sso (1)
- Tenserflow (1)
- Teradata (1)
- Vertex AI (1)
- Vertica (1)
- Videos (1)
- Workspace Security (1)
- Xbstream (1)
- June 2025 (1)
- May 2025 (3)
- March 2025 (2)
- February 2025 (1)
- January 2025 (2)
- December 2024 (1)
- October 2024 (2)
- September 2024 (7)
- August 2024 (4)
- July 2024 (2)
- June 2024 (6)
- May 2024 (3)
- April 2024 (2)
- February 2024 (1)
- January 2024 (11)
- December 2023 (10)
- November 2023 (11)
- October 2023 (10)
- September 2023 (8)
- August 2023 (6)
- July 2023 (2)
- June 2023 (13)
- May 2023 (4)
- April 2023 (6)
- March 2023 (10)
- February 2023 (6)
- January 2023 (5)
- December 2022 (10)
- November 2022 (10)
- October 2022 (10)
- September 2022 (13)
- August 2022 (16)
- July 2022 (12)
- June 2022 (13)
- May 2022 (11)
- April 2022 (4)
- March 2022 (5)
- February 2022 (4)
- January 2022 (14)
- December 2021 (16)
- November 2021 (11)
- October 2021 (6)
- September 2021 (11)
- August 2021 (6)
- July 2021 (9)
- June 2021 (4)
- May 2021 (8)
- April 2021 (16)
- March 2021 (16)
- February 2021 (6)
- January 2021 (12)
- December 2020 (12)
- November 2020 (17)
- October 2020 (11)
- September 2020 (10)
- August 2020 (11)
- July 2020 (13)
- June 2020 (6)
- May 2020 (9)
- April 2020 (18)
- March 2020 (21)
- February 2020 (13)
- January 2020 (15)
- December 2019 (10)
- November 2019 (11)
- October 2019 (12)
- September 2019 (16)
- August 2019 (15)
- July 2019 (10)
- June 2019 (16)
- May 2019 (20)
- April 2019 (21)
- March 2019 (14)
- February 2019 (18)
- January 2019 (18)
- December 2018 (5)
- November 2018 (16)
- October 2018 (12)
- September 2018 (20)
- August 2018 (27)
- July 2018 (31)
- June 2018 (34)
- May 2018 (28)
- April 2018 (27)
- March 2018 (17)
- February 2018 (8)
- January 2018 (20)
- December 2017 (14)
- November 2017 (4)
- October 2017 (1)
- September 2017 (3)
- August 2017 (5)
- July 2017 (4)
- June 2017 (2)
- May 2017 (7)
- April 2017 (7)
- March 2017 (8)
- February 2017 (8)
- January 2017 (5)
- December 2016 (3)
- November 2016 (4)
- October 2016 (8)
- September 2016 (9)
- August 2016 (10)
- July 2016 (9)
- June 2016 (8)
- May 2016 (13)
- April 2016 (16)
- March 2016 (13)
- February 2016 (11)
- January 2016 (6)
- December 2015 (11)
- November 2015 (11)
- October 2015 (5)
- September 2015 (16)
- August 2015 (4)
- July 2015 (1)
- June 2015 (3)
- May 2015 (6)
- April 2015 (5)
- March 2015 (5)
- February 2015 (4)
- January 2015 (3)
- December 2014 (7)
- October 2014 (4)
- September 2014 (6)
- August 2014 (6)
- July 2014 (16)
- June 2014 (7)
- May 2014 (6)
- April 2014 (5)
- March 2014 (4)
- February 2014 (10)
- January 2014 (6)
- December 2013 (8)
- November 2013 (12)
- October 2013 (9)
- September 2013 (6)
- August 2013 (7)
- July 2013 (9)
- June 2013 (7)
- May 2013 (7)
- April 2013 (4)
- March 2013 (7)
- February 2013 (4)
- January 2013 (4)
- December 2012 (6)
- November 2012 (8)
- October 2012 (9)
- September 2012 (3)
- August 2012 (5)
- July 2012 (5)
- June 2012 (7)
- May 2012 (11)
- April 2012 (1)
- March 2012 (8)
- February 2012 (1)
- January 2012 (6)
- December 2011 (8)
- November 2011 (5)
- October 2011 (9)
- September 2011 (6)
- August 2011 (4)
- July 2011 (1)
- June 2011 (1)
- May 2011 (5)
- April 2011 (2)
- February 2011 (2)
- January 2011 (2)
- December 2010 (1)
- November 2010 (7)
- October 2010 (3)
- September 2010 (8)
- August 2010 (2)
- July 2010 (4)
- June 2010 (7)
- May 2010 (2)
- April 2010 (1)
- March 2010 (3)
- February 2010 (3)
- January 2010 (2)
- November 2009 (6)
- October 2009 (6)
- August 2009 (3)
- July 2009 (3)
- June 2009 (3)
- May 2009 (2)
- April 2009 (8)
- March 2009 (6)
- February 2009 (4)
- January 2009 (3)
- November 2008 (3)
- October 2008 (7)
- September 2008 (6)
- August 2008 (9)
- July 2008 (9)
- June 2008 (9)
- May 2008 (9)
- April 2008 (8)
- March 2008 (4)
- February 2008 (3)
- January 2008 (3)
- December 2007 (2)
- November 2007 (7)
- October 2007 (1)
- August 2007 (4)
- July 2007 (3)
- June 2007 (8)
- May 2007 (4)
- April 2007 (2)
- March 2007 (2)
- February 2007 (5)
- January 2007 (8)
- December 2006 (1)
- November 2006 (3)
- October 2006 (4)
- September 2006 (3)
- July 2006 (1)
- May 2006 (2)
- April 2006 (1)
- July 2005 (1)
No Comments Yet
Let us know what you think