Share this
Caching Alternatives in Google Dataflow: Avoiding Quota Limits and Improving Performance
by Fernando Alberca on Sep 1, 2021 12:00:00 AM
The problem
When building data pipelines, it’s very common to require an external API call to enrich, validate or obfuscate data using external services. This might happen with streaming or batch pipeline. The situation is the same: call external services from a data pipeline in an efficient way and at the same time, and avoid any quota limit around those external services.
To tackle this issue, we need to assess the framework and tooling capabilities. In this case, I’m going to provide the details of how I would do it if the pipeline were a Dataflow job, and I will use Java for the sample job since it is commonly used for this kind of pipeline.
Possible solutions
Dataflow (Apache Beam) does not offer any caching options. This is fine if we take into consideration the shared-nothing architecture approach used in its design, but sometimes we need that feature in order to efficiently process some workloads. The closest thing would be Stateful processing, which we can use even though it is used for other purposes and with the implication that the state is distributed and partitioned by key and window. We can also use a solution based on stateful processing, but it’s more complex and has some additional trade-offs. Remember, we are looking to cache objects that are the result of an interaction with an external service.
One possible solution would be to cache the frequent API calls or group them in a bulk API operation. The latter is not always possible, but if we have control over the design of the API, it would result in better performance and resource utilization in some situations.
What to cache
First of all, we need to understand what API responses and objects are cacheable. Good candidates would be objects that:
- Don’t change often (whatever often means for the business around them)
- Are responses of idempotent calls
- We know the time to live (TTL)
Where to cache it
There are many alternatives, but we need an out-of-process cache for keeping the state live independent of the job threads and worker lifecycle; otherwise, we will lose it.
We could use any distributed cache: Hazelcast, Memcached and Redis would be good options.
Google Cloud offers the Memorystore managed service, which is compatible with Memcached and Redis, and any Memcached client implementation is useful. I saw a few samples from Google that use the Spymemcached client, so I will use the same for my example.
Before running the code
We need to make the initial setup of our Google Cloud project components, so let’s assume we have a project to play with.
Before running the code, we need to set up a few things:
- VPC
- Default VPC would be OK for running the sample code, but feel free to create a new one and adjust the parameters to pass to the Dataflow job.
- GCP bucket for staging files and serve as temp location
- Pubsub topic and subscription for that topic
- Service account with Dataflow worker permissions, storage admin access to GCS, Memorystore editor and PubSub subscriber
Additionally we need to get an API key for the weather service—for that, go to the OpenWeather site and follow the steps to get an API key for the free tier.
Sample Job with Memorystore
The example job will process messages from pubsub in a streaming fashion. The payload of the messages models simple sensor data that requires some enrichment with the local temperature.
The job will take the message and perform a lookup on the cache first in the EnrichWithExternalCall step. If there is a hit, the cached data will be used; otherwise it will perform an external call to the weather service to get the data. We are assuming that the temperature for the same location is asked over and over again for different sensors in the same area, so it makes perfect sense to cache that for a given range of time. If we know how frequently the temperature is updated, we can set that as TTL for the cached object.
MEMORYSTORE SETUP
Let’s create a memory store instance:
# Enable de API gcloud services enable memcache.googleapis.com #Create the cache instance gcloud beta memcache instances create df-cache --node-count=1 --node-cpu=1 --node-memory=1GB --region=us-west1 #Get instance details gcloud beta memcache instances describe df-cache --region=us-west1
Note:
Other than the default, VPC is used for the memcached instance. Be aware that the network has to be authorized to access the cached instance.
TUNING THE EXECUTION SCRIPT
Now let’s tune our execution script. Open the file df_cache_run.sh in the root directory and change the following parameters:
Param |
Description |
subnetwork | Name of the subnet used for running worker nodes. If you created a new VPC with subnets, replace it with that reference. |
serviceAccount | Replace it with the service account that was created and has the required permissions for running the sample code. |
project | The GCP project ID. |
stagingLocation | Set the bucket name used by dataflow for staging files. |
tempLocation | Set the bucket name used by dataflow for temp files. The same bucket for the staging location can be used. |
subscription | Pubsub subscription reference from where the job will read messages. |
dataBucket | Bucket where output data will be written. |
cacheEndpoint | Host and port of the cache instance. |
cacheTTL | TTL of the cached service response. |
weatherApiKey | Generated API key from OpenWeather site. |
Region | Region where the job should run. |
There are more parameters in the script, but those are standard to any Dataflow job.
Notice that I’m not using auto-scaling: I want to replicate the scenario where more than one worker is accessing the cache. In this sample, I’m not grouping the messages by any criteria, so while different workers may handle messages for the same city, it should leverage what was cached and not ask the API the data for the same city twice.
EXECUTING THE JOB
Once the settings were changed in the script, let’s run it and wait for the job to be running.
./df_cache_run.sh
If everything went OK, we will see a successful message at the end indicating that we were able to submit the job:
The next step is to check if the job is running, which we can do from the Google Cloud console or by command line. From the console, the status of the job can be observed by accessing the Jobs options in the Dataflow menu:
PUBLISHING MESSAGES
Once the job is running, we are ready to send our first message and see if the cache is working.
From the Pubsub topic that was created for running the sample in the Google Cloud Console, publish a message with the following JSON payload:
JOB COUNTERS
The first time it will fetch the data from the API (if the city and country combination is valid) and cache the result. To validate this, I’ve added counters that will provide that information. This information is available in the Dataflow job page along with other parametrization used by the job:
This tells that one API call was done and one element was enriched. If we send the message multiple times for the same city and country combination, we will see that just the enriched elements counter increases.
The elements are cached by one minute as it was specified in the parameters, so if we repeat the message, we will see that the API calls counter increased after one minute.
THINGS TO NOTICE
There are still a few things to tune in this example. The first is that we are not dealing with race conditions on multiple threads or workers, which means that more than one API call can be done for the same city and country combination until one of the threads sets the corresponding key in the cache.
For instance, if we trigger a massive amount of messages in a short period of time for a city that is not cached, multiple threads might try to get the value for the city and cache it:
The second thing is that we are not throttling the API calls—if there is a quota limit, we still could hit it, especially if there are more cities than requests per seconds allowed. To mitigate the problem using this approach, we could adjust the windowing function and use a trigger based on time or element count while grouping the messages by city during that window. As a consequence, though, we would be adding latency to the processing time of the events.
The third and final thing is that I’m not providing any error handling in the pipeline. That’s out of the scope of the post, so be aware that any failure will prevent the event from processing.
STATELESS CACHING JOB CODE
The code for the pipeline is very simple, which shows how powerful the beam model is:
At this point, we can delete the Memorystore instance and stop the Dataflow job, thus saving costs from the Google Cloud console.
Sample job with stateful processing
Next I’ll explore an option for avoiding quota limits with stateful processing. The strategy groups elements to enrich under a given key. Once we have a determined quantity of elements to query or a given time range passed, we make the API calls for those elements.
If we make a few adjustments to the work done for the previous pipeline, we transform the pipeline into a stateful one:
In the DoFn, we have to add the state declarations and the timer for invalidating the cache (otherwise we might be using stale data):
Then on the processElement, we need to reference the state and the timer and set the corresponding timeout:
Finally, we clean the cache after the time elapsed:
TUNING THE EXECUTION SCRIPT
Now let’s tune the other execution script. Open the file df_stateful_run.sh in the root directory and change the following parameters:
Param |
Description |
subnetwork | Name of the subnet used for running worker nodes. If you created a new VPC with subnets, replace it with that reference. |
serviceAccount | Replace it with the service account that was created and has the required permissions for running the sample code. |
project | The GCP project ID. |
stagingLocation | Set the bucket name used by dataflow for staging files. |
tempLocation | Set the bucket name used by dataflow for temp files. The same bucket for staging location can be used. |
subscription | Pubsub subscription reference from where the job will read messages. |
dataBucket | Bucket where output data will be written. |
maxStateInterval | Maximum time in MS that objects are kept in storage before performing external service invocation. |
triggerEveryCount | Minimum number of elements to buffer before trigger processing. |
triggerEveryTimeSec | Time elapsed before triggering processing in seconds. |
weatherApiKey | Generated API key from OpenWeather site. |
Region | Region where the job should run. |
EXECUTING THE JOB
Let’s run the new job using the new settings:
./df_stateful_run.sh
Like in the previous job, we will see a successful message indicating that the job was submitted if everything worked.
Now let’s proceed in the same way as before. Wait for the job to become ready and publish the messages in the topic. We can try with more cities:
{ "indoorTemp":-5, "cityCode":"Ottawa", "countryCode":"CA" } { "indoorTemp":0, "cityCode":"New York", "countryCode":"US" }
At the same time, check the worker logs to see how the state is saved and cleaned after the time elapsed:
Finally, check the counters to verify how many times the API was invoked and how many elements were enriched.
This option does not suffer the race conditions of the previous design because the grouping takes place per key and window, which is at the level the state is segregated. If we can support a little bit more latency, this option will outperform the first one in terms of avoiding quota limits.
SOURCE CODE
All the source code was shared on Github; feel free to experiment with it. I’m also including some tests for DoFn verification and a simple class that can be used for publishing events massively, in case you would like to make a more intensive test. The project uses Maven, so it would be easy to adapt it to other needs and build and deploy it.
That’s all folks! I hope you found this exercise interesting and useful.
Share this
- Technical Track (967)
- Oracle (410)
- MySQL (140)
- Cloud (128)
- Microsoft SQL Server (117)
- Open Source (90)
- Google Cloud (81)
- Microsoft Azure (63)
- Amazon Web Services (AWS) (58)
- Big Data (52)
- Google Cloud Platform (46)
- Cassandra (44)
- DevOps (41)
- Pythian (33)
- Linux (30)
- Database (26)
- Performance (25)
- Podcasts (25)
- Site Reliability Engineering (25)
- PostgreSQL (24)
- Oracle E-Business Suite (23)
- Oracle Database (22)
- Docker (21)
- DBA (20)
- Security (20)
- Exadata (18)
- MongoDB (18)
- Oracle Cloud Infrastructure (OCI) (18)
- Oracle Exadata (18)
- Automation (17)
- Hadoop (16)
- Oracleebs (16)
- Amazon RDS (15)
- Ansible (15)
- Snowflake (15)
- ASM (13)
- Artificial Intelligence (AI) (13)
- BigQuery (13)
- Replication (13)
- Advanced Analytics (12)
- Data (12)
- GenAI (12)
- Kubernetes (12)
- LLM (12)
- Authentication, SSO and MFA (11)
- Cloud Migration (11)
- Machine Learning (11)
- Rman (11)
- Datascape Podcast (10)
- Monitoring (10)
- Apache Cassandra (9)
- ChatGPT (9)
- Data Guard (9)
- Infrastructure (9)
- Oracle Applications (9)
- Python (9)
- Series (9)
- AWR (8)
- High Availability (8)
- Oracle EBS (8)
- Oracle Enterprise Manager (OEM) (8)
- Percona (8)
- Apache Beam (7)
- Data Governance (7)
- Innodb (7)
- Microsoft Azure SQL Database (7)
- Migration (7)
- Myrocks (7)
- Performance Tuning (7)
- Data Enablement (6)
- Data Visualization (6)
- Database Performance (6)
- Oracle Enterprise Manager (6)
- Orchestrator (6)
- RocksDB (6)
- Serverless (6)
- Azure Data Factory (5)
- Azure Synapse Analytics (5)
- Covid-19 (5)
- Disaster Recovery (5)
- Generative AI (5)
- Google BigQuery (5)
- Mariadb (5)
- Microsoft (5)
- Scala (5)
- Windows (5)
- Xtrabackup (5)
- Airflow (4)
- Analytics (4)
- Apex (4)
- Cloud Security (4)
- Cloud Spanner (4)
- CockroachDB (4)
- Data Management (4)
- Data Pipeline (4)
- Data Security (4)
- Data Strategy (4)
- Database Administrator (4)
- Database Management (4)
- Database Migration (4)
- Dataflow (4)
- Fusion Middleware (4)
- Google (4)
- Oracle Autonomous Database (Adb) (4)
- Oracle Cloud (4)
- Prometheus (4)
- Redhat (4)
- Slob (4)
- Ssl (4)
- Terraform (4)
- Amazon Relational Database Service (Rds) (3)
- Apache Kafka (3)
- Apexexport (3)
- Aurora (3)
- Business Intelligence (3)
- Cloud Armor (3)
- Cloud Database (3)
- Cloud FinOps (3)
- Cosmos Db (3)
- Data Analytics (3)
- Data Integration (3)
- Database Monitoring (3)
- Database Troubleshooting (3)
- Database Upgrade (3)
- Databases (3)
- Dataops (3)
- Digital Transformation (3)
- ERP (3)
- Google Chrome (3)
- Google Cloud Sql (3)
- Google Workspace (3)
- Graphite (3)
- Heterogeneous Database Migration (3)
- Liquibase (3)
- Oracle Data Guard (3)
- Oracle Live Sql (3)
- Oracle Rac (3)
- Perl (3)
- Rdbms (3)
- Remote Teams (3)
- S3 (3)
- SAP (3)
- Tensorflow (3)
- Adf (2)
- Adop (2)
- Amazon Data Migration Service (2)
- Amazon Ec2 (2)
- Amazon S3 (2)
- Apache Flink (2)
- Ashdump (2)
- Atp (2)
- Autonomous (2)
- Awr Data Mining (2)
- Cloud Cost Optimization (2)
- Cloud Data Fusion (2)
- Cloud Hosting (2)
- Cloud Infrastructure (2)
- Cloud Shell (2)
- Cloud Sql (2)
- Conferences (2)
- Cosmosdb (2)
- Cost Management (2)
- Cyber Security (2)
- Data Analysis (2)
- Data Discovery (2)
- Data Engineering (2)
- Data Migration (2)
- Data Modeling (2)
- Data Quality (2)
- Data Streaming (2)
- Data Warehouse (2)
- Database Consulting (2)
- Database Migrations (2)
- Dataguard (2)
- Docker-Composer (2)
- Enterprise Data Platform (EDP) (2)
- Etl (2)
- Events (2)
- Gemini (2)
- Health Check (2)
- Infrastructure As Code (2)
- Innodb Cluster (2)
- Innodb File Structure (2)
- Innodb Group Replication (2)
- NLP (2)
- Neo4J (2)
- Nosql (2)
- Open Source Database (2)
- Oracle Datase (2)
- Oracle Extended Manager (Oem) (2)
- Oracle Flashback (2)
- Oracle Forms (2)
- Oracle Installation (2)
- Oracle Io Testing (2)
- Podcast (2)
- Power Bi (2)
- Redshift (2)
- Remote DBA (2)
- Remote Sre (2)
- SAP HANA Cloud (2)
- Single Sign-On (2)
- Webinars (2)
- X5 (2)
- Actifio (1)
- Adf Custom Email (1)
- Adrci (1)
- Advanced Data Services (1)
- Afd (1)
- Ahf (1)
- Alloydb (1)
- Amazon (1)
- Amazon Athena (1)
- Amazon Aurora Backtrack (1)
- Amazon Efs (1)
- Amazon Redshift (1)
- Amazon Sagemaker (1)
- Amazon Vpc Flow Logs (1)
- Analysis (1)
- Analytical Models (1)
- Anisble (1)
- Anthos (1)
- Apache (1)
- Apache Nifi (1)
- Apache Spark (1)
- Application Migration (1)
- Ash (1)
- Asmlib (1)
- Atlas CLI (1)
- Awr Mining (1)
- Aws Lake Formation (1)
- Azure Data Lake (1)
- Azure Data Lake Analytics (1)
- Azure Data Lake Store (1)
- Azure Data Migration Service (1)
- Azure OpenAI (1)
- Azure Sql Data Warehouse (1)
- Batches In Cassandra (1)
- Business Insights (1)
- Chown (1)
- Chrome Security (1)
- Cloud Browser (1)
- Cloud Build (1)
- Cloud Consulting (1)
- Cloud Data Warehouse (1)
- Cloud Database Management (1)
- Cloud Dataproc (1)
- Cloud Foundry (1)
- Cloud Manager (1)
- Cloud Networking (1)
- Cloud SQL Replica (1)
- Cloud Scheduler (1)
- Cloud Services (1)
- Cloud Strategies (1)
- Compliance (1)
- Conversational AI (1)
- DAX (1)
- Data Analytics Platform (1)
- Data Box (1)
- Data Classification (1)
- Data Cleansing (1)
- Data Encryption (1)
- Data Estate (1)
- Data Flow Management (1)
- Data Insights (1)
- Data Integrity (1)
- Data Lake (1)
- Data Leader (1)
- Data Lifecycle Management (1)
- Data Lineage (1)
- Data Masking (1)
- Data Mesh (1)
- Data Migration Assistant (1)
- Data Migration Service (1)
- Data Mining (1)
- Data Monetization (1)
- Data Policy (1)
- Data Profiling (1)
- Data Protection (1)
- Data Retention (1)
- Data Safe (1)
- Data Sheets (1)
- Data Summit (1)
- Data Vault (1)
- Data Warehouse Modernization (1)
- Database Auditing (1)
- Database Consultant (1)
- Database Link (1)
- Database Modernization (1)
- Database Provisioning (1)
- Database Provisioning Failed (1)
- Database Replication (1)
- Database Scaling (1)
- Database Schemas (1)
- Database Security (1)
- Databricks (1)
- Datascape 59 (1)
- DeepSeek (1)
- Duet AI (1)
- Edp (1)
- Gcp Compute (1)
- Gcp-Spanner (1)
- Global Analytics (1)
- Google Analytics (1)
- Google Cloud Architecture Framework (1)
- Google Cloud Data Services (1)
- Google Cloud Partner (1)
- Google Cloud Spanner (1)
- Google Cloud VMware Engine (1)
- Google Compute Engine (1)
- Google Dataflow (1)
- Google Datalab (1)
- Google Grab And Go (1)
- Graph Algorithms (1)
- Graph Databases (1)
- Graph Inferences (1)
- Graph Theory (1)
- GraphQL (1)
- Healthcheck (1)
- Information (1)
- Infrastructure As A Code (1)
- Innobackupex (1)
- Innodb Concurrency (1)
- Innodb Flush Method (1)
- It Industry (1)
- Kubeflow (1)
- LMSYS Chatbot Arena (1)
- Linux Host Monitoring (1)
- Linux Storage Appliance (1)
- Looker (1)
- MMLU (1)
- Managed Services (1)
- Migrate (1)
- Migrating Ssis Catalog (1)
- Migration Checklist (1)
- MongoDB Atlas (1)
- MongoDB Compass (1)
- Newsroom (1)
- Nifi (1)
- OPEX (1)
- ORAPKI (1)
- Odbcs (1)
- Odbs (1)
- On-Premises (1)
- Ora-01852 (1)
- Ora-7445 (1)
- Oracle Cursor (1)
- Oracle Database Appliance (1)
- Oracle Database Se2 (1)
- Oracle Database Standard Edition 2 (1)
- Oracle Database Upgrade (1)
- Oracle Database@Google Cloud (1)
- Oracle Exadata Smart Scan (1)
- Oracle Licensing (1)
- Oracle Linux Virtualization Manager (1)
- Oracle Oda (1)
- Oracle Openworld (1)
- Oracle Parallelism (1)
- Oracle RMAN (1)
- Oracle Rdbms (1)
- Oracle Real Application Clusters (1)
- Oracle Reports (1)
- Oracle Security (1)
- Oracle Wallet (1)
- Perfomrance (1)
- Performance Schema (1)
- Policy (1)
- Prompt Engineering (1)
- Public Cloud (1)
- Pythian News (1)
- Rdb (1)
- Replication Compatibility (1)
- Replication Error (1)
- Retail (1)
- Scaling Ir (1)
- Securing Sql Server (1)
- Security Compliance (1)
- Serverless Computing (1)
- Sso (1)
- Tenserflow (1)
- Teradata (1)
- Vertex AI (1)
- Vertica (1)
- Videos (1)
- Workspace Security (1)
- Xbstream (1)
- May 2025 (1)
- March 2025 (2)
- February 2025 (1)
- January 2025 (2)
- December 2024 (1)
- October 2024 (2)
- September 2024 (7)
- August 2024 (4)
- July 2024 (2)
- June 2024 (6)
- May 2024 (3)
- April 2024 (2)
- February 2024 (1)
- January 2024 (11)
- December 2023 (10)
- November 2023 (11)
- October 2023 (10)
- September 2023 (8)
- August 2023 (6)
- July 2023 (2)
- June 2023 (13)
- May 2023 (4)
- April 2023 (6)
- March 2023 (10)
- February 2023 (6)
- January 2023 (5)
- December 2022 (10)
- November 2022 (10)
- October 2022 (10)
- September 2022 (13)
- August 2022 (16)
- July 2022 (12)
- June 2022 (13)
- May 2022 (11)
- April 2022 (4)
- March 2022 (5)
- February 2022 (4)
- January 2022 (14)
- December 2021 (16)
- November 2021 (11)
- October 2021 (6)
- September 2021 (11)
- August 2021 (6)
- July 2021 (9)
- June 2021 (4)
- May 2021 (8)
- April 2021 (16)
- March 2021 (16)
- February 2021 (6)
- January 2021 (12)
- December 2020 (12)
- November 2020 (17)
- October 2020 (11)
- September 2020 (10)
- August 2020 (11)
- July 2020 (13)
- June 2020 (6)
- May 2020 (9)
- April 2020 (18)
- March 2020 (21)
- February 2020 (13)
- January 2020 (15)
- December 2019 (10)
- November 2019 (11)
- October 2019 (12)
- September 2019 (16)
- August 2019 (15)
- July 2019 (10)
- June 2019 (16)
- May 2019 (20)
- April 2019 (21)
- March 2019 (14)
- February 2019 (18)
- January 2019 (18)
- December 2018 (5)
- November 2018 (16)
- October 2018 (12)
- September 2018 (20)
- August 2018 (27)
- July 2018 (31)
- June 2018 (34)
- May 2018 (28)
- April 2018 (27)
- March 2018 (17)
- February 2018 (8)
- January 2018 (20)
- December 2017 (14)
- November 2017 (4)
- October 2017 (1)
- September 2017 (3)
- August 2017 (5)
- July 2017 (4)
- June 2017 (2)
- May 2017 (7)
- April 2017 (7)
- March 2017 (8)
- February 2017 (8)
- January 2017 (5)
- December 2016 (3)
- November 2016 (4)
- October 2016 (8)
- September 2016 (9)
- August 2016 (10)
- July 2016 (9)
- June 2016 (8)
- May 2016 (13)
- April 2016 (16)
- March 2016 (13)
- February 2016 (11)
- January 2016 (6)
- December 2015 (11)
- November 2015 (11)
- October 2015 (5)
- September 2015 (16)
- August 2015 (4)
- July 2015 (1)
- June 2015 (3)
- May 2015 (6)
- April 2015 (5)
- March 2015 (5)
- February 2015 (4)
- January 2015 (3)
- December 2014 (7)
- October 2014 (4)
- September 2014 (6)
- August 2014 (6)
- July 2014 (16)
- June 2014 (7)
- May 2014 (6)
- April 2014 (5)
- March 2014 (4)
- February 2014 (10)
- January 2014 (6)
- December 2013 (8)
- November 2013 (12)
- October 2013 (9)
- September 2013 (6)
- August 2013 (7)
- July 2013 (9)
- June 2013 (7)
- May 2013 (7)
- April 2013 (4)
- March 2013 (7)
- February 2013 (4)
- January 2013 (4)
- December 2012 (6)
- November 2012 (8)
- October 2012 (9)
- September 2012 (3)
- August 2012 (5)
- July 2012 (5)
- June 2012 (7)
- May 2012 (11)
- April 2012 (1)
- March 2012 (8)
- February 2012 (1)
- January 2012 (6)
- December 2011 (8)
- November 2011 (5)
- October 2011 (9)
- September 2011 (6)
- August 2011 (4)
- July 2011 (1)
- June 2011 (1)
- May 2011 (5)
- April 2011 (2)
- February 2011 (2)
- January 2011 (2)
- December 2010 (1)
- November 2010 (7)
- October 2010 (3)
- September 2010 (8)
- August 2010 (2)
- July 2010 (4)
- June 2010 (7)
- May 2010 (2)
- April 2010 (1)
- March 2010 (3)
- February 2010 (3)
- January 2010 (2)
- November 2009 (6)
- October 2009 (6)
- August 2009 (3)
- July 2009 (3)
- June 2009 (3)
- May 2009 (2)
- April 2009 (8)
- March 2009 (6)
- February 2009 (4)
- January 2009 (3)
- November 2008 (3)
- October 2008 (7)
- September 2008 (6)
- August 2008 (9)
- July 2008 (9)
- June 2008 (9)
- May 2008 (9)
- April 2008 (8)
- March 2008 (4)
- February 2008 (3)
- January 2008 (3)
- December 2007 (2)
- November 2007 (7)
- October 2007 (1)
- August 2007 (4)
- July 2007 (3)
- June 2007 (8)
- May 2007 (4)
- April 2007 (2)
- March 2007 (2)
- February 2007 (5)
- January 2007 (8)
- December 2006 (1)
- November 2006 (3)
- October 2006 (4)
- September 2006 (3)
- July 2006 (1)
- May 2006 (2)
- April 2006 (1)
- July 2005 (1)
No Comments Yet
Let us know what you think