Share this
Near Real-Time Data Processing for BigQuery: Part One
by Scott McCormick on Apr 15, 2021 12:00:00 AM
This post describes (near) real-time data processing for BigQuery with unique and other check constraints, and unit testing. This is part one of two, and describes the real-time ingestion of the data. Part two will describe how to implement ASSERTS on the data and unit testing inside of BigQuery.
Since December, https://blog.pythian.com/near-real-time-data-processing-for-bigquery-part-2Google has introduced new tools which allow for serverless ingestion of files and processing of data in BigQuery. These tools are:
- GCP Workflows
- Dataform
GCP Workflows
GCP Workflows were developed by Google and are fully integrated into the GCP console. They are meant to be used to orchestrate and automate Google Cloud and HTTP-based API services with serverless workflows. This means when you’re working with something which is mostly API calls to other services, Workflows is your tool of choice.
Workflows are declarative YAML. So you simply define the process you want to happen, and the workflow will take care of all the underlying effort to implement it.
Dataform
Dataform is an SaaS company that Google purchased and currently all development must still happen on their website. It’s used to develop SQL Pipelines to transform data within BigQuery without writing code.
With Dataform, you define the SQL statements you want to run. After that, they handle creating tables, views, ordering and error handling.
Real-time processing of flat files into BigQuery
We make use of these two tools along with existing GCP infrastructure to develop a pipeline which will immediately ingest a file into BigQuery and do all the translations needed for reporting. In addition, the pipeline will validate the data’s uniqueness and formatting. Finally, I will show how to perform unit testing of the data.
File Ingestion
The file is ingested using a GCS bucket trigger which calls the workflow. There is currently no way to trigger a workflow directly from a GCS bucket trigger.
To give proper credit, I used examples provided by Christian Kravanja and Mehdi BHA. Combining their code has produced a horrible Frankenstein which is nearly unstoppable.
This workflow:
- Accepts three parameters (bucket, file and table name).
- Starts a BigQuery load job for the file.
- Waits for the file to finish using an exponential backoff.
- Updates the file metadata to “loaded” and the load job_id.
- Returns the number of rows in the file, loaded into BigQuery, and discarded.
- And of course, logs various messages throughout.
Create GCS bucket
First things first, let’s create the infrastructure. You’ll need a GCS bucket.
Create ingestion service account
Next, we need to create a service account to run the workflow. It should have the following permissions:
- BigQuery Data Owner
- BigQuery Job User
- Logs Writer
- Storage Admin
- Workflows Invoker
Create workflow
Now, create the workflow that will start the actual load of the BigQuery job.
main: params: [args] #Parameters: # # bucket: GCS Bucket Name (no gs://) # file: File Name. Can have wildcard # datasetName: Dataset Name # tableName: Table Name # # {"bucket":"bucket-name","file":"filename.csv","datasetName":"BQDatasetName","tableName":"BQTableName"} # {"bucket":"staging-ingest","file":"categories.csv","datasetName":"dataform","tableName":"categories"} steps: # Only ten variables per assign block - environment_vars: # Built-in environment variables. assign: # Mostly not used in this code, but here to show the list of what exists - project_id: ${sys.get_env("GOOGLE_CLOUD_PROJECT_ID")} - project_num: ${sys.get_env("GOOGLE_CLOUD_PROJECT_NUMBER")} - workflow_location: ${sys.get_env("GOOGLE_CLOUD_LOCATION")} - workflow_id: ${sys.get_env("GOOGLE_CLOUD_WORKFLOW_ID")} - workflow_revision_id: ${sys.get_env("GOOGLE_CLOUD_WORKFLOW_REVISION_ID")} - global_vars: # Global variables assign: - job_id: - bigquery_vars: # BigQuery job configuration assign: - request_body: configuration: load: { destinationTable: { datasetId: "${args.datasetName}", projectId: "${project_id}", tableId: "${args.tableName}" }, sourceUris: [ "${ \"gs://\" + args.bucket + \"/\" + args.file}" ], sourceFormat: "CSV", autodetect: "true", nullMarker: "NA", createDisposition: "CREATE_IF_NEEDED", writeDisposition: "WRITE_APPEND", fieldDelimiter: "," } - log_config_state: call: sys.log args: text: ${"BigQuery job configuration " + json.encode_to_string(request_body)} severity: INFO - load_bigquery_job: call: http.post args: url: ${"https://bigquery.googleapis.com/bigquery/v2/projects/" + project_id + "/jobs"} body: ${request_body} headers: Content-Type: "application/json" auth: type: OAuth2 result: job_response - set_job_id: assign: - job_id: ${job_response.body.jobReference.jobId} - monitor_bq_job: try: steps: - get_bq_job_status: call: http.request args: url: ${"https://bigquery.googleapis.com/bigquery/v2/projects/" + project_id + "/jobs/" + job_id + "?location=" + workflow_location} method: GET auth: type: OAuth2 result: bq_job_status - induce_backoff_retry_if_state_not_done: switch: - condition: ${bq_job_status.body.status.state != "DONE"} raise: ${bq_job_status.body.status.state} # a workaround to pass job_state value rather that a real error retry: predicate: ${job_state_predicate} max_retries: 10 backoff: initial_delay: 1 max_delay: 60 multiplier: 2 - tag_source_object: call: http.put args: url: "${\"https://storage.googleapis.com/storage/v1/b/\" + args.bucket + \"/o/\" + args.file }" body: metadata: "status": "loaded" "loadJobId": ${job_id} headers: Content-Type: "application/json" auth: type: OAuth2 - get_load_results: steps: - get_final_job_status: call: http.request args: url: ${"https://bigquery.googleapis.com/bigquery/v2/projects/" + project_id + "/jobs/" + job_id + "?location=" + workflow_location} method: GET auth: type: OAuth2 result: load_response - log_final_job_state: call: sys.log args: text: ${"BigQuery job final status " + json.encode_to_string(load_response)} severity: INFO - raise_error_on_failure: switch: - condition: ${("errorResult" in load_response.body.status)} raise: ${load_response.body.status.errors} - return_result: return: > ${"Files processed: " + load_response.body.statistics.load.inputFiles + ". Rows inserted: " + load_response.body.statistics.load.outputRows + ". Bad records: " + load_response.body.statistics.load.badRecords } job_state_predicate: params: [job_state] steps: - condition_to_retry: switch: - condition: ${job_state != "DONE"} return: True # do retry - otherwise: return: False # stop retrying
Create cloud function
A workflow can not be currently triggered from a GCS bucket, so we need to create a cloud function to call the workflow.
So why not use the cloud function only? Well, there are a few reasons:
- Cloud Functions can only run for nine minutes, and when ingesting GB or TB of data, it’s possible this will timeout.
- Cloud Functions are pure Python, and writing even a simple API call can be complex.
- Cloud Functions are billed by duration (vs. by steps for Workflow). A long running, synchronous API call can be very expensive.
- And lastly, this wouldn’t be much of a blog post if we did that.
So, use this code to create the cloud function.
Create a requirements.txt with these values:
# Function dependencies, for example: # package>=version google-auth requests
Create a main.py file with this code:
import os.path import json import urllib.request import google.auth from google.auth.transport.requests import AuthorizedSession def getProjectID(): url = "http://metadata.google.internal/computeMetadata/v1/project/project-id" req = urllib.request.Request(url) req.add_header("Metadata-Flavor", "Google") return urllib.request.urlopen(req).read().decode() def onNewFile(event, context): project_id = getProjectID() region_id = os.environ.get('WORKFLOW_REGION_ID') tableName = event['name'].split('.')[0] print('Event ID: {}'.format(context.event_id)) print('Event type: {}'.format(context.event_type)) print('Bucket: {}'.format(event['bucket'])) print('File: {}'.format(event['name'])) print('Dataset: {}'.format(os.environ.get('DATASET_NAME'))) print('Table: {}'.format(tableName)) scoped_credentials, project = google.auth.default( scopes=['https://www.googleapis.com/auth/cloud-platform']) authed_session = AuthorizedSession(scoped_credentials) URL = 'https://workflowexecutions.googleapis.com/v1/projects/{}/locations/{}/workflows/bigquery-fileload/executions'.format(project_id, region_id) params_dict = { \ 'bucket': '{}'.format(event['bucket']), 'file': '{}'.format(event['name']), \ 'datasetName': '{}'.format(os.environ.get('DATASET_NAME')), \ 'tableName': '{}'.format(tableName) } PARAMS = { 'argument' : json.dumps(params_dict) } response = authed_session.post(url=URL, json=PARAMS) print(response)
And finally, deploy the cloud function using this script:
gcloud functions deploy loadfiletobigquery \ --region [GCP-REGION] \ --entry-point onNewFile \ --runtime python38 \ --set-env-vars WORKFLOW_REGION_ID=[WORKFLOW_REGION_ID],DATASET_NAME=[BQ_DATASET_NAME] \ --trigger-resource [GCS-BUCKET-NAME] \ --trigger-event google.storage.object.finalize \ --service-account [Ingestion SERVICE-ACCOUNT-NAME]
End of part one
Now we have an ingestion process setup that will take any flat file and load it into BigQuery. Just place the file on the GCS bucket, wait a few seconds, and you’ll see it automagically appear.
Share this
- Technical Track (967)
- Oracle (410)
- MySQL (140)
- Cloud (128)
- Microsoft SQL Server (117)
- Open Source (90)
- Google Cloud (81)
- Microsoft Azure (63)
- Amazon Web Services (AWS) (58)
- Big Data (52)
- Google Cloud Platform (46)
- Cassandra (44)
- DevOps (41)
- Pythian (33)
- Linux (30)
- Database (26)
- Performance (25)
- Podcasts (25)
- Site Reliability Engineering (25)
- PostgreSQL (24)
- Oracle E-Business Suite (23)
- Oracle Database (22)
- Docker (21)
- DBA (20)
- Security (20)
- Exadata (18)
- MongoDB (18)
- Oracle Cloud Infrastructure (OCI) (18)
- Oracle Exadata (18)
- Automation (17)
- Hadoop (16)
- Oracleebs (16)
- Amazon RDS (15)
- Ansible (15)
- Snowflake (15)
- ASM (13)
- Artificial Intelligence (AI) (13)
- BigQuery (13)
- Replication (13)
- Advanced Analytics (12)
- Data (12)
- GenAI (12)
- Kubernetes (12)
- LLM (12)
- Authentication, SSO and MFA (11)
- Cloud Migration (11)
- Machine Learning (11)
- Rman (11)
- Datascape Podcast (10)
- Monitoring (10)
- Apache Cassandra (9)
- ChatGPT (9)
- Data Guard (9)
- Infrastructure (9)
- Oracle Applications (9)
- Python (9)
- Series (9)
- AWR (8)
- High Availability (8)
- Oracle EBS (8)
- Oracle Enterprise Manager (OEM) (8)
- Percona (8)
- Apache Beam (7)
- Data Governance (7)
- Innodb (7)
- Microsoft Azure SQL Database (7)
- Migration (7)
- Myrocks (7)
- Performance Tuning (7)
- Data Enablement (6)
- Data Visualization (6)
- Database Performance (6)
- Oracle Enterprise Manager (6)
- Orchestrator (6)
- RocksDB (6)
- Serverless (6)
- Azure Data Factory (5)
- Azure Synapse Analytics (5)
- Covid-19 (5)
- Disaster Recovery (5)
- Generative AI (5)
- Google BigQuery (5)
- Mariadb (5)
- Microsoft (5)
- Scala (5)
- Windows (5)
- Xtrabackup (5)
- Airflow (4)
- Analytics (4)
- Apex (4)
- Cloud Security (4)
- Cloud Spanner (4)
- CockroachDB (4)
- Data Management (4)
- Data Pipeline (4)
- Data Security (4)
- Data Strategy (4)
- Database Administrator (4)
- Database Management (4)
- Database Migration (4)
- Dataflow (4)
- Fusion Middleware (4)
- Google (4)
- Oracle Autonomous Database (Adb) (4)
- Oracle Cloud (4)
- Prometheus (4)
- Redhat (4)
- Slob (4)
- Ssl (4)
- Terraform (4)
- Amazon Relational Database Service (Rds) (3)
- Apache Kafka (3)
- Apexexport (3)
- Aurora (3)
- Business Intelligence (3)
- Cloud Armor (3)
- Cloud Database (3)
- Cloud FinOps (3)
- Cosmos Db (3)
- Data Analytics (3)
- Data Integration (3)
- Database Monitoring (3)
- Database Troubleshooting (3)
- Database Upgrade (3)
- Databases (3)
- Dataops (3)
- Digital Transformation (3)
- ERP (3)
- Google Chrome (3)
- Google Cloud Sql (3)
- Google Workspace (3)
- Graphite (3)
- Heterogeneous Database Migration (3)
- Liquibase (3)
- Oracle Data Guard (3)
- Oracle Live Sql (3)
- Oracle Rac (3)
- Perl (3)
- Rdbms (3)
- Remote Teams (3)
- S3 (3)
- SAP (3)
- Tensorflow (3)
- Adf (2)
- Adop (2)
- Amazon Data Migration Service (2)
- Amazon Ec2 (2)
- Amazon S3 (2)
- Apache Flink (2)
- Ashdump (2)
- Atp (2)
- Autonomous (2)
- Awr Data Mining (2)
- Cloud Cost Optimization (2)
- Cloud Data Fusion (2)
- Cloud Hosting (2)
- Cloud Infrastructure (2)
- Cloud Shell (2)
- Cloud Sql (2)
- Conferences (2)
- Cosmosdb (2)
- Cost Management (2)
- Cyber Security (2)
- Data Analysis (2)
- Data Discovery (2)
- Data Engineering (2)
- Data Migration (2)
- Data Modeling (2)
- Data Quality (2)
- Data Streaming (2)
- Data Warehouse (2)
- Database Consulting (2)
- Database Migrations (2)
- Dataguard (2)
- Docker-Composer (2)
- Enterprise Data Platform (EDP) (2)
- Etl (2)
- Events (2)
- Gemini (2)
- Health Check (2)
- Infrastructure As Code (2)
- Innodb Cluster (2)
- Innodb File Structure (2)
- Innodb Group Replication (2)
- NLP (2)
- Neo4J (2)
- Nosql (2)
- Open Source Database (2)
- Oracle Datase (2)
- Oracle Extended Manager (Oem) (2)
- Oracle Flashback (2)
- Oracle Forms (2)
- Oracle Installation (2)
- Oracle Io Testing (2)
- Podcast (2)
- Power Bi (2)
- Redshift (2)
- Remote DBA (2)
- Remote Sre (2)
- SAP HANA Cloud (2)
- Single Sign-On (2)
- Webinars (2)
- X5 (2)
- Actifio (1)
- Adf Custom Email (1)
- Adrci (1)
- Advanced Data Services (1)
- Afd (1)
- Ahf (1)
- Alloydb (1)
- Amazon (1)
- Amazon Athena (1)
- Amazon Aurora Backtrack (1)
- Amazon Efs (1)
- Amazon Redshift (1)
- Amazon Sagemaker (1)
- Amazon Vpc Flow Logs (1)
- Analysis (1)
- Analytical Models (1)
- Anisble (1)
- Anthos (1)
- Apache (1)
- Apache Nifi (1)
- Apache Spark (1)
- Application Migration (1)
- Ash (1)
- Asmlib (1)
- Atlas CLI (1)
- Awr Mining (1)
- Aws Lake Formation (1)
- Azure Data Lake (1)
- Azure Data Lake Analytics (1)
- Azure Data Lake Store (1)
- Azure Data Migration Service (1)
- Azure OpenAI (1)
- Azure Sql Data Warehouse (1)
- Batches In Cassandra (1)
- Business Insights (1)
- Chown (1)
- Chrome Security (1)
- Cloud Browser (1)
- Cloud Build (1)
- Cloud Consulting (1)
- Cloud Data Warehouse (1)
- Cloud Database Management (1)
- Cloud Dataproc (1)
- Cloud Foundry (1)
- Cloud Manager (1)
- Cloud Networking (1)
- Cloud SQL Replica (1)
- Cloud Scheduler (1)
- Cloud Services (1)
- Cloud Strategies (1)
- Compliance (1)
- Conversational AI (1)
- DAX (1)
- Data Analytics Platform (1)
- Data Box (1)
- Data Classification (1)
- Data Cleansing (1)
- Data Encryption (1)
- Data Estate (1)
- Data Flow Management (1)
- Data Insights (1)
- Data Integrity (1)
- Data Lake (1)
- Data Leader (1)
- Data Lifecycle Management (1)
- Data Lineage (1)
- Data Masking (1)
- Data Mesh (1)
- Data Migration Assistant (1)
- Data Migration Service (1)
- Data Mining (1)
- Data Monetization (1)
- Data Policy (1)
- Data Profiling (1)
- Data Protection (1)
- Data Retention (1)
- Data Safe (1)
- Data Sheets (1)
- Data Summit (1)
- Data Vault (1)
- Data Warehouse Modernization (1)
- Database Auditing (1)
- Database Consultant (1)
- Database Link (1)
- Database Modernization (1)
- Database Provisioning (1)
- Database Provisioning Failed (1)
- Database Replication (1)
- Database Scaling (1)
- Database Schemas (1)
- Database Security (1)
- Databricks (1)
- Datascape 59 (1)
- DeepSeek (1)
- Duet AI (1)
- Edp (1)
- Gcp Compute (1)
- Gcp-Spanner (1)
- Global Analytics (1)
- Google Analytics (1)
- Google Cloud Architecture Framework (1)
- Google Cloud Data Services (1)
- Google Cloud Partner (1)
- Google Cloud Spanner (1)
- Google Cloud VMware Engine (1)
- Google Compute Engine (1)
- Google Dataflow (1)
- Google Datalab (1)
- Google Grab And Go (1)
- Graph Algorithms (1)
- Graph Databases (1)
- Graph Inferences (1)
- Graph Theory (1)
- GraphQL (1)
- Healthcheck (1)
- Information (1)
- Infrastructure As A Code (1)
- Innobackupex (1)
- Innodb Concurrency (1)
- Innodb Flush Method (1)
- It Industry (1)
- Kubeflow (1)
- LMSYS Chatbot Arena (1)
- Linux Host Monitoring (1)
- Linux Storage Appliance (1)
- Looker (1)
- MMLU (1)
- Managed Services (1)
- Migrate (1)
- Migrating Ssis Catalog (1)
- Migration Checklist (1)
- MongoDB Atlas (1)
- MongoDB Compass (1)
- Newsroom (1)
- Nifi (1)
- OPEX (1)
- ORAPKI (1)
- Odbcs (1)
- Odbs (1)
- On-Premises (1)
- Ora-01852 (1)
- Ora-7445 (1)
- Oracle Cursor (1)
- Oracle Database Appliance (1)
- Oracle Database Se2 (1)
- Oracle Database Standard Edition 2 (1)
- Oracle Database Upgrade (1)
- Oracle Database@Google Cloud (1)
- Oracle Exadata Smart Scan (1)
- Oracle Licensing (1)
- Oracle Linux Virtualization Manager (1)
- Oracle Oda (1)
- Oracle Openworld (1)
- Oracle Parallelism (1)
- Oracle RMAN (1)
- Oracle Rdbms (1)
- Oracle Real Application Clusters (1)
- Oracle Reports (1)
- Oracle Security (1)
- Oracle Wallet (1)
- Perfomrance (1)
- Performance Schema (1)
- Policy (1)
- Prompt Engineering (1)
- Public Cloud (1)
- Pythian News (1)
- Rdb (1)
- Replication Compatibility (1)
- Replication Error (1)
- Retail (1)
- Scaling Ir (1)
- Securing Sql Server (1)
- Security Compliance (1)
- Serverless Computing (1)
- Sso (1)
- Tenserflow (1)
- Teradata (1)
- Vertex AI (1)
- Vertica (1)
- Videos (1)
- Workspace Security (1)
- Xbstream (1)
- May 2025 (1)
- March 2025 (2)
- February 2025 (1)
- January 2025 (2)
- December 2024 (1)
- October 2024 (2)
- September 2024 (7)
- August 2024 (4)
- July 2024 (2)
- June 2024 (6)
- May 2024 (3)
- April 2024 (2)
- February 2024 (1)
- January 2024 (11)
- December 2023 (10)
- November 2023 (11)
- October 2023 (10)
- September 2023 (8)
- August 2023 (6)
- July 2023 (2)
- June 2023 (13)
- May 2023 (4)
- April 2023 (6)
- March 2023 (10)
- February 2023 (6)
- January 2023 (5)
- December 2022 (10)
- November 2022 (10)
- October 2022 (10)
- September 2022 (13)
- August 2022 (16)
- July 2022 (12)
- June 2022 (13)
- May 2022 (11)
- April 2022 (4)
- March 2022 (5)
- February 2022 (4)
- January 2022 (14)
- December 2021 (16)
- November 2021 (11)
- October 2021 (6)
- September 2021 (11)
- August 2021 (6)
- July 2021 (9)
- June 2021 (4)
- May 2021 (8)
- April 2021 (16)
- March 2021 (16)
- February 2021 (6)
- January 2021 (12)
- December 2020 (12)
- November 2020 (17)
- October 2020 (11)
- September 2020 (10)
- August 2020 (11)
- July 2020 (13)
- June 2020 (6)
- May 2020 (9)
- April 2020 (18)
- March 2020 (21)
- February 2020 (13)
- January 2020 (15)
- December 2019 (10)
- November 2019 (11)
- October 2019 (12)
- September 2019 (16)
- August 2019 (15)
- July 2019 (10)
- June 2019 (16)
- May 2019 (20)
- April 2019 (21)
- March 2019 (14)
- February 2019 (18)
- January 2019 (18)
- December 2018 (5)
- November 2018 (16)
- October 2018 (12)
- September 2018 (20)
- August 2018 (27)
- July 2018 (31)
- June 2018 (34)
- May 2018 (28)
- April 2018 (27)
- March 2018 (17)
- February 2018 (8)
- January 2018 (20)
- December 2017 (14)
- November 2017 (4)
- October 2017 (1)
- September 2017 (3)
- August 2017 (5)
- July 2017 (4)
- June 2017 (2)
- May 2017 (7)
- April 2017 (7)
- March 2017 (8)
- February 2017 (8)
- January 2017 (5)
- December 2016 (3)
- November 2016 (4)
- October 2016 (8)
- September 2016 (9)
- August 2016 (10)
- July 2016 (9)
- June 2016 (8)
- May 2016 (13)
- April 2016 (16)
- March 2016 (13)
- February 2016 (11)
- January 2016 (6)
- December 2015 (11)
- November 2015 (11)
- October 2015 (5)
- September 2015 (16)
- August 2015 (4)
- July 2015 (1)
- June 2015 (3)
- May 2015 (6)
- April 2015 (5)
- March 2015 (5)
- February 2015 (4)
- January 2015 (3)
- December 2014 (7)
- October 2014 (4)
- September 2014 (6)
- August 2014 (6)
- July 2014 (16)
- June 2014 (7)
- May 2014 (6)
- April 2014 (5)
- March 2014 (4)
- February 2014 (10)
- January 2014 (6)
- December 2013 (8)
- November 2013 (12)
- October 2013 (9)
- September 2013 (6)
- August 2013 (7)
- July 2013 (9)
- June 2013 (7)
- May 2013 (7)
- April 2013 (4)
- March 2013 (7)
- February 2013 (4)
- January 2013 (4)
- December 2012 (6)
- November 2012 (8)
- October 2012 (9)
- September 2012 (3)
- August 2012 (5)
- July 2012 (5)
- June 2012 (7)
- May 2012 (11)
- April 2012 (1)
- March 2012 (8)
- February 2012 (1)
- January 2012 (6)
- December 2011 (8)
- November 2011 (5)
- October 2011 (9)
- September 2011 (6)
- August 2011 (4)
- July 2011 (1)
- June 2011 (1)
- May 2011 (5)
- April 2011 (2)
- February 2011 (2)
- January 2011 (2)
- December 2010 (1)
- November 2010 (7)
- October 2010 (3)
- September 2010 (8)
- August 2010 (2)
- July 2010 (4)
- June 2010 (7)
- May 2010 (2)
- April 2010 (1)
- March 2010 (3)
- February 2010 (3)
- January 2010 (2)
- November 2009 (6)
- October 2009 (6)
- August 2009 (3)
- July 2009 (3)
- June 2009 (3)
- May 2009 (2)
- April 2009 (8)
- March 2009 (6)
- February 2009 (4)
- January 2009 (3)
- November 2008 (3)
- October 2008 (7)
- September 2008 (6)
- August 2008 (9)
- July 2008 (9)
- June 2008 (9)
- May 2008 (9)
- April 2008 (8)
- March 2008 (4)
- February 2008 (3)
- January 2008 (3)
- December 2007 (2)
- November 2007 (7)
- October 2007 (1)
- August 2007 (4)
- July 2007 (3)
- June 2007 (8)
- May 2007 (4)
- April 2007 (2)
- March 2007 (2)
- February 2007 (5)
- January 2007 (8)
- December 2006 (1)
- November 2006 (3)
- October 2006 (4)
- September 2006 (3)
- July 2006 (1)
- May 2006 (2)
- April 2006 (1)
- July 2005 (1)
No Comments Yet
Let us know what you think