Share this
Postgres Covering Indexes and the Visibility Map
by Valerie Parham-Thompson on Aug 6, 2020 12:00:00 AM
enceladus=# create extension pg_visibility;I'll import the master_plan data from the Cassini mission:
enceladus=# COPY master_plan FROM '.../data/master_plan.csv' WITH DELIMITER ',' HEADER CSV; COPY 61873 enceladus=# select * from master_plan limit 1; -[ RECORD 1 ]------+--------------------------- start_time_utc | 2004-135T18:40:00 duration | 000T09:22:00 date | 14-May-04 team | CAPS spass_type | Non-SPASS target | Saturn request_name | SURVEY library_definition | Magnetospheric survey title | MAPS Survey description | MAPS magnetospheric surveyAt this point, all the visibility flags are off. This makes sense, because we just performed a bunch of inserts. The vacuum process turns them all on:
enceladus=# select count(blkno), all_visible from pg_visibility_map('master_plan') group by all_visible;
count | all_visible
-------+-------------
1959 | f
enceladus=# vacuum master_plan ;
VACUUM
enceladus=# select count(blkno), all_visible from pg_visibility_map('master_plan') group by all_visible;
count | all_visible
-------+-------------
1959 | t Let's perform a lot of inserts. I'm using the "watch" option here so I don't have to type as much. Afterwards, a lot of the visibility flags are marked as off:
enceladus=# COPY master_plan FROM '.../data/master_plan.csv' WITH DELIMITER ',' HEADER CSV;
COPY 61873
enceladus=# \watch
Fri Jul 24 16:26:52 2020 (every 2s)
...
enceladus=# select count(*) from master_plan;
-[ RECORD 1 ]--
count | 3093650
enceladus=# select count(blkno), all_visible from pg_visibility_map('master_plan') group by all_visible;
count | all_visible
-------+-------------
97868 | f
1941 | t Before I add the covering index, I'll run my intended query. By the way, don't take the absolute times into account here. This is a test on a puny laptop. I'm mainly trying to demonstrate the absence or presence of "index only scan" in the explain plan (notice the "Parallel Seq Scan" below):
time psql -U postgres -d enceladus -c"explain analyze select team, spass_type, target from master_plan where team='CDA' or team='RSS' order by team, target" QUERY PLAN -------------------------------------------------------------------------------------------------------------------------------------------- Gather Merge (cost=133280.23..161724.62 rows=243792 width=22) (actual time=5075.047..5244.599 rows=286500 loops=1) Workers Planned: 2 Workers Launched: 2 -> Sort (cost=132280.21..132584.95 rows=121896 width=22) (actual time=5069.007..5103.744 rows=95500 loops=3) Sort Key: team, target Sort Method: external merge Disk: 3352kB Worker 0: Sort Method: external merge Disk: 3448kB Worker 1: Sort Method: external merge Disk: 3432kB -> Parallel Seq Scan on master_plan (cost=0.00..119480.37 rows=121896 width=22) (actual time=0.996..4877.452 rows=95500 loops=3) Filter: ((team = 'CDA'::text) OR (team = 'RSS'::text)) Rows Removed by Filter: 935717 Planning Time: 0.419 ms Execution Time: 5272.250 ms (13 rows) real 0m6.450s user 0m0.012s sys 0m0.027sLet's add an index we hope to provide index-only queries:
CREATE INDEX idx_tpt ON public.master_plan USING btree (team, spass_type, target);It doesn't look like it helped. I still see "Parallel Seq Scan" below:
time psql -U postgres -d enceladus -c"explain analyze select team, spass_type, target from master_plan where team='CDA' or team='RSS' order by team, target" QUERY PLAN -------------------------------------------------------------------------------------------------------------------------------------------- Gather Merge (cost=132711.41..160669.96 rows=239628 width=22) (actual time=4746.679..4915.888 rows=286500 loops=1) Workers Planned: 2 Workers Launched: 2 -> Sort (cost=131711.39..132010.92 rows=119814 width=22) (actual time=4722.466..4757.252 rows=95500 loops=3) Sort Key: team, target Sort Method: external merge Disk: 3424kB Worker 0: Sort Method: external merge Disk: 3416kB Worker 1: Sort Method: external merge Disk: 3392kB -> Parallel Seq Scan on master_plan (cost=0.00..119144.31 rows=119814 width=22) (actual time=3.395..4533.381 rows=95500 loops=3) Filter: ((team = 'CDA'::text) OR (team = 'RSS'::text)) Rows Removed by Filter: 935717 Planning Time: 21.649 ms Execution Time: 4943.530 ms (13 rows) real 0m7.130s user 0m0.013s sys 0m0.038sRemember that Postgres-specific requirement regarding the visibility flag for covering indexes?
enceladus=# select count(blkno), all_visible from pg_visibility_map('master_plan') group by all_visible;
count | all_visible
-------+-------------
97868 | f
1941 | t Clean up the flags:
enceladus=# vacuum master_plan ;
VACUUM
enceladus=# select count(blkno), all_visible from pg_visibility_map('master_plan') group by all_visible;
count | all_visible
-------+-------------
97947 | t Now we see the index-only scan show up (notice "Index Only Scan" below):
time psql -U postgres -d enceladus -c"explain analyze select team, spass_type, target from master_plan where team='CDA' or team='RSS' order by team, target" QUERY PLAN ----------------------------------------------------------------------------------------------------------------------------------------------------------------- Gather Merge (cost=114722.12..142667.60 rows=239516 width=22) (actual time=461.861..612.337 rows=286500 loops=1) Workers Planned: 2 Workers Launched: 2 -> Sort (cost=113722.09..114021.49 rows=119758 width=22) (actual time=455.925..482.057 rows=95500 loops=3) Sort Key: team, target Sort Method: external merge Disk: 4080kB Worker 0: Sort Method: external merge Disk: 3080kB Worker 1: Sort Method: external merge Disk: 3072kB -> Parallel Index Only Scan using idx_tpt on master_plan (cost=0.43..101163.65 rows=119758 width=22) (actual time=24.874..358.271 rows=95500 loops=3) Filter: ((team = 'CDA'::text) OR (team = 'RSS'::text)) Rows Removed by Filter: 935717 Heap Fetches: 0 Planning Time: 0.538 ms Execution Time: 640.655 ms (14 rows) real 0m1.065s user 0m0.009s sys 0m0.012sThe problem returns if you perform a lot of updates. Back to "Seq Scan" below:
enceladus=# update master_plan set target='Saturn2' where target='Saturn';
UPDATE 847900
enceladus=# select count(blkno), all_visible from pg_visibility_map('master_plan') group by all_visible;
count | all_visible
--------+-------------
119439 | f
4627 | t
time psql -U postgres -d enceladus -c"explain analyze select team, spass_type, target from master_plan where team='CDA' or team='RSS' order by team, target"
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------------------
Gather Merge (cost=165711.17..201108.67 rows=303386 width=22) (actual time=14423.062..14960.570 rows=286500 loops=1)
Workers Planned: 2
Workers Launched: 2
-> Sort (cost=164711.14..165090.37 rows=151693 width=22) (actual time=14414.109..14449.936 rows=95500 loops=3)
Sort Key: team, target
Sort Method: external merge Disk: 3456kB
Worker 0: Sort Method: external merge Disk: 3432kB
Worker 1: Sort Method: external merge Disk: 3360kB
-> Parallel Seq Scan on master_plan (cost=0.00..148545.86 rows=151693 width=22) (actual time=0.113..14210.193 rows=95500 loops=3)
Filter: ((team = 'CDA'::text) OR (team = 'RSS'::text))
Rows Removed by Filter: 935717
Planning Time: 8.331 ms
Execution Time: 15011.649 ms
(13 rows)
real 0m17.167s
user 0m0.014s
sys 0m0.044s We can clean it up again and get our index-only scans (and performance) back:
enceladus=# vacuum master_plan ;
VACUUM
enceladus=# select count(blkno), all_visible from pg_visibility_map('master_plan') group by all_visible;
count | all_visible
--------+-------------
124066 | t
time psql -U postgres -d enceladus -c"explain analyze select team, spass_type, target from master_plan where team='CDA' or team='RSS' order by team, target"
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------------------------------------------
Gather Merge (cost=135747.09..163705.64 rows=239628 width=22) (actual time=1822.618..1963.040 rows=286500 loops=1)
Workers Planned: 2
Workers Launched: 2
-> Sort (cost=134747.07..135046.60 rows=119814 width=22) (actual time=1811.738..1835.136 rows=95500 loops=3)
Sort Key: team, target
Sort Method: external merge Disk: 3640kB
Worker 0: Sort Method: external merge Disk: 3336kB
Worker 1: Sort Method: external merge Disk: 3280kB
-> Parallel Index Only Scan using idx_tpt on master_plan (cost=0.43..122179.99 rows=119814 width=22) (actual time=50.554..1716.339 rows=95500 loops=3)
Filter: ((team = 'CDA'::text) OR (team = 'RSS'::text))
Rows Removed by Filter: 935717
Heap Fetches: 0
Planning Time: 4.707 ms
Execution Time: 2005.764 ms
(14 rows)
real 0m2.710s
user 0m0.011s
sys 0m0.015s Moral: You knew this already, but make sure you're vacuuming frequently enough, especially if you're doing a lot of inserts or updates. The default vacuum ratio is generally too high, so you could lower that and autovacuum will likely help you out. If you are seeing that covering indexes don't seem to be working, a likely reason is that you aren't running vacuums frequently enough on quickly changing datasets. Here are some other queries to use with the extension. This one does an in-depth check to find out if the visibility map is corrupt (maybe due to a previous database crash). We want zero rows found:
enceladus=# select * from pg_check_visible('master_plan');
t_ctid
--------
(0 rows) If you do discover that a visibility map is corrupt, rebuild it using the pg_truncate_visibility_map function, and then vacuum.
enceladus=# select pg_truncate_visibility_map('master_plan');
enceladus=# select count(blkno), all_visible from pg_visibility_map('master_plan') group by all_visible;
count | all_visible
--------+-------------
124066 | f
enceladus=# vacuum master_plan ;
VACUUM
enceladus=# select count(blkno), all_visible from pg_visibility_map('master_plan') group by all_visible;
count | all_visible
--------+-------------
124066 | t
Share this
- Technical Track (816)
- Oracle (488)
- Database (229)
- MySQL (144)
- Cloud (133)
- Microsoft SQL Server (124)
- Open Source (84)
- Google Cloud (82)
- Microsoft Azure (67)
- Amazon Web Services (AWS) (63)
- Big Data (50)
- Cassandra (44)
- Google Cloud Platform (44)
- DevOps (38)
- Linux (28)
- Pythian (27)
- PostgreSQL (26)
- Podcasts (25)
- Site Reliability Engineering (23)
- Performance (22)
- Docker (21)
- Oracle E-Business Suite (21)
- DBA (18)
- Oracle Cloud Infrastructure (OCI) (18)
- MongoDB (17)
- Security (17)
- Hadoop (16)
- BigQuery (15)
- Amazon RDS (14)
- Automation (14)
- Exadata (14)
- Oracleebs (14)
- Snowflake (14)
- Ansible (13)
- Oracle Database (13)
- Oracle Exadata (13)
- ASM (12)
- Data (12)
- LLM (12)
- Artificial Intelligence (AI) (11)
- GenAI (11)
- Kubernetes (11)
- Machine Learning (11)
- Advanced Analytics (10)
- Datascape Podcast (10)
- Oracle Applications (10)
- Replication (10)
- Authentication, SSO and MFA (8)
- ChatGPT (8)
- Cloud Migration (8)
- Infrastructure (8)
- Monitoring (8)
- Percona (8)
- Analytics (7)
- Apache (7)
- Apache Cassandra (7)
- Data Governance (7)
- High Availability (7)
- Mariadb (7)
- Microsoft Azure SQL Database (7)
- Myrocks (7)
- Oracle EBS (7)
- Python (7)
- Rman (7)
- SAP (7)
- Series (7)
- AWR (6)
- Airflow (6)
- Apache Beam (6)
- Data Guard (6)
- Innodb (6)
- Migration (6)
- Oracle Enterprise Manager (OEM) (6)
- Orchestrator (6)
- RocksDB (6)
- Azure Synapse Analytics (5)
- Covid-19 (5)
- Data Enablement (5)
- Disaster Recovery (5)
- Microsoft (5)
- Performance Tuning (5)
- Scala (5)
- Serverless (5)
- Cloud Security (4)
- Cloud Spanner (4)
- CockroachDB (4)
- Data Management (4)
- Data Pipeline (4)
- Data Security (4)
- Data Strategy (4)
- Data Visualization (4)
- Databases (4)
- Dataflow (4)
- Generative AI (4)
- Google (4)
- Google BigQuery (4)
- Oracle Autonomous Database (Adb) (4)
- Oracle Cloud (4)
- Oracle Enterprise Manager (4)
- Redhat (4)
- Ssl (4)
- Windows (4)
- Xtrabackup (4)
- Amazon Relational Database Service (Rds) (3)
- Apex (3)
- Cloud Database (3)
- Cloud FinOps (3)
- Data Analytics (3)
- Data Migrations (3)
- Database Migration (3)
- Digital Transformation (3)
- ERP (3)
- Google Chrome (3)
- Google Cloud Sql (3)
- Google Workspace (3)
- Heterogeneous Database Migration (3)
- Oracle Live Sql (3)
- Oracle Rac (3)
- Perl (3)
- Power Bi (3)
- Prometheus (3)
- Remote Teams (3)
- Slob (3)
- Tensorflow (3)
- Terraform (3)
- Amazon Data Migration Service (2)
- Amazon Ec2 (2)
- Anisble (2)
- Apache Flink (2)
- Apache Kafka (2)
- Apexexport (2)
- Ashdump (2)
- Aurora (2)
- Azure Data Factory (2)
- Cloud Armor (2)
- Cloud Data Fusion (2)
- Cloud Hosting (2)
- Cloud Infrastructure (2)
- Cloud Shell (2)
- Cloud Sql (2)
- Conferences (2)
- Cosmos Db (2)
- Cosmosdb (2)
- Cost Management (2)
- Data Discovery (2)
- Data Integration (2)
- Data Quality (2)
- Data Streaming (2)
- Database Administrator (2)
- Database Consulting (2)
- Database Monitoring (2)
- Database Performance (2)
- Database Troubleshooting (2)
- Dataguard (2)
- Dataops (2)
- Enterprise Data Platform (EDP) (2)
- Events (2)
- Fusion Middleware (2)
- Gemini (2)
- Graphite (2)
- Infrastructure As Code (2)
- Innodb Cluster (2)
- Innodb File Structure (2)
- Innodb Group Replication (2)
- Liquibase (2)
- NLP (2)
- Nosql (2)
- Oracle Data Guard (2)
- Oracle Datase (2)
- Oracle Flashback (2)
- Oracle Forms (2)
- Oracle Installation (2)
- Oracle Io Testing (2)
- Podcast (2)
- Rdbms (2)
- Redshift (2)
- Remote DBA (2)
- Remote Sre (2)
- S3 (2)
- Single Sign-On (2)
- Webinars (2)
- X5 (2)
- AI (1)
- Actifio (1)
- Adop (1)
- Advanced Data Services (1)
- Afd (1)
- Alloydb (1)
- Amazon (1)
- Amazon Aurora Backtrack (1)
- Amazon Efs (1)
- Amazon Redshift (1)
- Amazon S3 (1)
- Amazon Sagemaker (1)
- Amazon Vpc Flow Logs (1)
- Analysis (1)
- Analytical Models (1)
- Anthos (1)
- Application Migration (1)
- Ash (1)
- Asmlib (1)
- Atp (1)
- Autonomous (1)
- Awr Data Mining (1)
- Awr Mining (1)
- Azure Data Lake (1)
- Azure Data Lake Analytics (1)
- Azure Data Lake Store (1)
- Azure Data Migration Service (1)
- Azure OpenAI (1)
- Azure Sql Data Warehouse (1)
- Batches In Cassandra (1)
- Business Insights (1)
- Business Intelligence (1)
- Chown (1)
- Chrome Security (1)
- Cloud Browser (1)
- Cloud Build (1)
- Cloud Consulting (1)
- Cloud Cost Optimization (1)
- Cloud Data Warehouse (1)
- Cloud Database Management (1)
- Cloud Dataproc (1)
- Cloud Foundry (1)
- Cloud Networking (1)
- Cloud SQL Replica (1)
- Cloud Scheduler (1)
- Cloud Services (1)
- Cloud Strategies (1)
- Compliance (1)
- Conversational AI (1)
- Cyber Security (1)
- Data Analysis (1)
- Data Analytics Platform (1)
- Data Box (1)
- Data Classification (1)
- Data Cleansing (1)
- Data Encryption (1)
- Data Engineering (1)
- Data Estate (1)
- Data Insights (1)
- Data Integrity (1)
- Data Leader (1)
- Data Lifecycle Management (1)
- Data Lineage (1)
- Data Masking (1)
- Data Mesh (1)
- Data Migration (1)
- Data Migration Assistant (1)
- Data Migration Service (1)
- Data Mining (1)
- Data Monetization (1)
- Data Policy (1)
- Data Profiling (1)
- Data Protection (1)
- Data Retention (1)
- Data Safe (1)
- Data Sheets (1)
- Data Summit (1)
- Data Vault (1)
- Data Warehouse (1)
- Database Consultant (1)
- Database Link (1)
- Database Management (1)
- Database Migrations (1)
- Database Modernization (1)
- Database Provisioning (1)
- Database Provisioning Failed (1)
- Database Replication (1)
- Database Schemas (1)
- Database Upgrade (1)
- Databricks (1)
- Datascape 59 (1)
- DeepSeek (1)
- Docker-Composer (1)
- Duet AI (1)
- Edp (1)
- Etl (1)
- Gcp Compute (1)
- Gcp-Spanner (1)
- Global Analytics (1)
- Google Analytics (1)
- Google Cloud Architecture Framework (1)
- Google Cloud Data Services (1)
- Google Cloud Partner (1)
- Google Cloud Spanner (1)
- Google Cloud VMware Engine (1)
- Google Compute Engine (1)
- Google Dataflow (1)
- Google Datalab (1)
- Google Grab And Go (1)
- Graph Algorithms (1)
- Graph Inferences (1)
- Graph Theory (1)
- GraphQL (1)
- Health Check (1)
- Healthcheck (1)
- Information (1)
- Infrastructure As A Code (1)
- Innobackupex (1)
- Innodb Concurrency (1)
- Innodb Flush Method (1)
- It Industry (1)
- Kubeflow (1)
- LMSYS Chatbot Arena (1)
- Linux Host Monitoring (1)
- Linux Storage Appliance (1)
- Looker (1)
- MMLU (1)
- Managed Services (1)
- Migrate (1)
- Neo4J (1)
- Newsroom (1)
- Nifi (1)
- OPEX (1)
- Odbcs (1)
- Odbs (1)
- On-Premises (1)
- Open Source Database (1)
- Ora-01852 (1)
- Ora-7445 (1)
- Oracle Cursor (1)
- Oracle Database@Google Cloud (1)
- Oracle Exadata Smart Scan (1)
- Oracle Licensing (1)
- Oracle Linux Virtualization Manager (1)
- Oracle Oda (1)
- Oracle Openworld (1)
- Oracle Parallelism (1)
- Oracle RMAN (1)
- Oracle Rdbms (1)
- Oracle Real Application Clusters (1)
- Oracle Reports (1)
- Oracle Security (1)
- Perfomrance (1)
- Performance Schema (1)
- Policy (1)
- Prompt Engineering (1)
- Public Cloud (1)
- Pythian News (1)
- Rdb (1)
- Replication Error (1)
- Retail (1)
- SAP HANA Cloud (1)
- Securing Sql Server (1)
- Serverless Computing (1)
- Sso (1)
- Tenserflow (1)
- Teradata (1)
- Vertex AI (1)
- Videos (1)
- Workspace Security (1)
- Xbstream (1)
- August 2025 (1)
- July 2025 (3)
- June 2025 (1)
- May 2025 (3)
- March 2025 (2)
- February 2025 (1)
- January 2025 (2)
- December 2024 (1)
- October 2024 (2)
- September 2024 (7)
- August 2024 (4)
- July 2024 (2)
- June 2024 (6)
- May 2024 (3)
- April 2024 (2)
- February 2024 (1)
- January 2024 (11)
- December 2023 (10)
- November 2023 (9)
- October 2023 (11)
- September 2023 (9)
- August 2023 (6)
- July 2023 (2)
- June 2023 (13)
- May 2023 (4)
- April 2023 (6)
- March 2023 (10)
- February 2023 (6)
- January 2023 (5)
- December 2022 (10)
- November 2022 (10)
- October 2022 (10)
- September 2022 (13)
- August 2022 (16)
- July 2022 (12)
- June 2022 (13)
- May 2022 (11)
- April 2022 (4)
- March 2022 (5)
- February 2022 (4)
- January 2022 (14)
- December 2021 (16)
- November 2021 (11)
- October 2021 (6)
- September 2021 (11)
- August 2021 (6)
- July 2021 (9)
- June 2021 (4)
- May 2021 (8)
- April 2021 (16)
- March 2021 (16)
- February 2021 (6)
- January 2021 (12)
- December 2020 (12)
- November 2020 (17)
- October 2020 (11)
- September 2020 (10)
- August 2020 (11)
- July 2020 (13)
- June 2020 (6)
- May 2020 (9)
- April 2020 (18)
- March 2020 (21)
- February 2020 (13)
- January 2020 (15)
- December 2019 (10)
- November 2019 (11)
- October 2019 (12)
- September 2019 (16)
- August 2019 (15)
- July 2019 (10)
- June 2019 (16)
- May 2019 (20)
- April 2019 (21)
- March 2019 (14)
- February 2019 (18)
- January 2019 (18)
- December 2018 (5)
- November 2018 (16)
- October 2018 (12)
- September 2018 (20)
- August 2018 (27)
- July 2018 (31)
- June 2018 (34)
- May 2018 (28)
- April 2018 (27)
- March 2018 (17)
- February 2018 (8)
- January 2018 (20)
- December 2017 (14)
- November 2017 (4)
- October 2017 (1)
- September 2017 (3)
- August 2017 (5)
- July 2017 (4)
- June 2017 (2)
- May 2017 (7)
- April 2017 (7)
- March 2017 (8)
- February 2017 (8)
- January 2017 (5)
- December 2016 (3)
- November 2016 (4)
- October 2016 (8)
- September 2016 (9)
- August 2016 (10)
- July 2016 (9)
- June 2016 (8)
- May 2016 (13)
- April 2016 (16)
- March 2016 (13)
- February 2016 (11)
- January 2016 (6)
- December 2015 (11)
- November 2015 (11)
- October 2015 (5)
- September 2015 (16)
- August 2015 (4)
- July 2015 (1)
- June 2015 (3)
- May 2015 (6)
- April 2015 (5)
- March 2015 (5)
- February 2015 (4)
- January 2015 (3)
- December 2014 (7)
- October 2014 (4)
- September 2014 (6)
- August 2014 (6)
- July 2014 (16)
- June 2014 (7)
- May 2014 (6)
- April 2014 (5)
- March 2014 (4)
- February 2014 (10)
- January 2014 (6)
- December 2013 (8)
- November 2013 (12)
- October 2013 (9)
- September 2013 (6)
- August 2013 (7)
- July 2013 (9)
- June 2013 (7)
- May 2013 (7)
- April 2013 (4)
- March 2013 (7)
- February 2013 (4)
- January 2013 (4)
- December 2012 (6)
- November 2012 (8)
- October 2012 (9)
- September 2012 (3)
- August 2012 (5)
- July 2012 (5)
- June 2012 (7)
- May 2012 (11)
- April 2012 (1)
- March 2012 (8)
- February 2012 (1)
- January 2012 (6)
- December 2011 (8)
- November 2011 (5)
- October 2011 (9)
- September 2011 (6)
- August 2011 (4)
- July 2011 (1)
- June 2011 (1)
- May 2011 (5)
- April 2011 (2)
- February 2011 (2)
- January 2011 (2)
- December 2010 (1)
- November 2010 (7)
- October 2010 (3)
- September 2010 (8)
- August 2010 (2)
- July 2010 (4)
- June 2010 (7)
- May 2010 (2)
- April 2010 (1)
- March 2010 (3)
- February 2010 (3)
- January 2010 (2)
- November 2009 (6)
- October 2009 (6)
- August 2009 (3)
- July 2009 (3)
- June 2009 (3)
- May 2009 (2)
- April 2009 (8)
- March 2009 (6)
- February 2009 (4)
- January 2009 (3)
- November 2008 (3)
- October 2008 (7)
- September 2008 (6)
- August 2008 (9)
- July 2008 (9)
- June 2008 (9)
- May 2008 (9)
- April 2008 (8)
- March 2008 (4)
- February 2008 (3)
- January 2008 (3)
- December 2007 (2)
- November 2007 (7)
- October 2007 (1)
- August 2007 (4)
- July 2007 (3)
- June 2007 (8)
- May 2007 (4)
- April 2007 (2)
- March 2007 (2)
- February 2007 (5)
- January 2007 (8)
- December 2006 (1)
- November 2006 (3)
- October 2006 (4)
- September 2006 (3)
- July 2006 (1)
- May 2006 (2)
- April 2006 (1)
- July 2005 (1)
No Comments Yet
Let us know what you think