Share this
Mysterious rollback and replay with partitions
by Luke Davies on Apr 3, 2018 12:00:00 AM
CREATE TABLE output_main_archive (
EXTRACT_ID NUMBER
, EXTRACT_DATE DATE
, FIELD1 VARCHAR2(255)
)
PARTITION BY LIST (extract_id)
SUBPARTITION BY RANGE (extract_date)
SUBPARTITION TEMPLATE
(
SUBPARTITION ED_JAN_17 VALUES LESS THAN (TO_DATE('01-FEB-2017','DD-MON-YYYY'))
, SUBPARTITION ED_FEB_17 VALUES LESS THAN (TO_DATE('01-MAR-2017','DD-MON-YYYY'))
, SUBPARTITION ED_MAR_17 VALUES LESS THAN (TO_DATE('01-APR-2017','DD-MON-YYYY'))
, SUBPARTITION ED_APR_17 VALUES LESS THAN (TO_DATE('01-MAY-2017','DD-MON-YYYY'))
, SUBPARTITION ED_MAY_17 VALUES LESS THAN (TO_DATE('01-JUN-2017','DD-MON-YYYY'))
, SUBPARTITION ED_JUN_17 VALUES LESS THAN (TO_DATE('01-JUL-2017','DD-MON-YYYY'))
, SUBPARTITION ED_JUL_17 VALUES LESS THAN (TO_DATE('01-AUG-2017','DD-MON-YYYY'))
, SUBPARTITION ED_AUG_17 VALUES LESS THAN (TO_DATE('01-SEP-2017','DD-MON-YYYY'))
, SUBPARTITION ED_SEP_17 VALUES LESS THAN (TO_DATE('01-OCT-2017','DD-MON-YYYY'))
, SUBPARTITION ED_OCT_17 VALUES LESS THAN (TO_DATE('01-NOV-2017','DD-MON-YYYY'))
, SUBPARTITION ED_NOV_17 VALUES LESS THAN (TO_DATE('01-DEC-2017','DD-MON-YYYY'))
, SUBPARTITION ED_DEC_17 VALUES LESS THAN (TO_DATE('01-JAN-2018','DD-MON-YYYY'))
)
(
PARTITION ext_id_1 VALUES ( 1 )
, PARTITION ext_id_2 VALUES ( 2 )
, PARTITION ext_id_3 VALUES ( 3 )
, PARTITION ext_id_4 VALUES ( 4 )
, PARTITION ext_id_5 VALUES ( 5 )
, PARTITION ext_id_6 VALUES ( 6 )
, PARTITION ext_id_7 VALUES ( 7 )
, PARTITION ext_id_8 VALUES ( 8 )
, PARTITION ext_id_9 VALUES ( 9 )
, PARTITION ext_id_10 VALUES ( 10 )
)
/
I loaded a source table with some random test data like so
CREATE TABLE output_main (
EXTRACT_ID NUMBER
, EXTRACT_DATE DATE
, FIELD1 VARCHAR2(255)
)
/
INSERT /*+ APPEND */ INTO output_main
SELECT TRUNC(DBMS_RANDOM.value(1,11))
, TO_DATE('01/01/2017','DD/MM/YYYY') + DBMS_RANDOM.value(0,365)
, DBMS_RANDOM.string('L',TRUNC(DBMS_RANDOM.value(100,255))) AS long_string
FROM dual
CONNECT BY level <= 100000
/
INSERT INTO output_main SELECT * FROM output_main;
INSERT INTO output_main SELECT * FROM output_main;
COMMIT;
This gives me 400K rows to play with which is enough time for me to gather some evidence during the INSERT run. The first run was simply a copy of the rows from the source table to the partitioned table. I have also set on tracing so I can see what is happening.
exec DBMS_MONITOR.SESSION_TRACE_ENABLE
INSERT INTO output_main_archive SELECT * FROM output_main;
COMMIT;
I examined the trace files using 3 methods
- tkprof - Oracle provided trace analysis tool
- tvdxtat.sh - A free tool written by Christian Antognini from Trivadis -> Introduce TVD$XTAT
- orasrp - A free tool written by Egor Starostin -> Oracle Session Resource Profiler
INSERT INTO output_main_archive SELECT * FROM output_main
call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 23.97 113.81 16760 337419 1193762 400000
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 2 23.98 113.82 16760 337419 1193762 400000
We can see that the statement took just under 2 minutes on my little test system. Further more, after using the TriVaDis eXtended Tracefile Analysis Tool 4.0, I can see that 15 recursive statements were executed. Here they are
update seg$ ...
select ... from seg$ ...
delete from deferred_stg$ ...
delete from seg$ ...
update partobj$ ...
insert into seg$ ...
update tabsubpart$ ...
select ... from seg$ ...
delete from tab_stats$ ...
select ... from deferred_stg$ ...
select ... from RecycleBin$ ...
select ... from undo$ ...
select ... from sys.obj$ o, sys.user$ u, sys.trigger$ t, sys.obj$ bo ...
select ... from opt_directive_own$ ...
select ... from hist_head$ ...
Now for the test run where I will ALTER the table during my INSERT. The ALTER statement is as follows
ALTER TABLE output_main_archive ADD
PARTITION ext_id_null VALUES (NULL)
, PARTITION ext_id_unknown VALUES (DEFAULT)
/
During the course of the run I will check the transactions using the following SQL
set lines 140
set pages 140
col osuser for a15
col username for a15
col logon_time for a25
col transaction_date for a25
select s.sid
, s.serial#
, s.osuser
, s.username
, t.used_ublk
, to_char(s.logon_time,'DD-MON-YYYY HH24:MI:SS') logon_time
, to_char(t.start_date,'DD-MON-YYYY HH24:MI:SS') transaction_date
from v$session s
, v$transaction t
where s.taddr = t.addr
order by t.start_date;
Here's my sequence of events
- Session 1 : Perform the INSERT into the partitioned table
- Session 2 : Examine the transaction
- Session 2 : ALTER the partitioned table
- Session 2 : Examine the transaction
- Session 1 : Watch the transaction complete and commit
SYS@LUKEPDB1(LUKE) SQL> @trans
SID SERIAL# OSUSER USERNAME USED_UBLK LOGON_TIME TRANSACTION_DATE
---------- ---------- --------------- --------------- ---------- ------------------------- -------------------------
254 17710 oracle PART 309 28-MAR-2018 13:03:53 28-MAR-2018 13:05:18
1 row selected.
Note the USED_UBLK number - this is the size of the UNDO space that is being used by the transaction. After having paused for a short while I ran it again
SYS@LUKEPDB1(LUKE) SQL> @trans
SID SERIAL# OSUSER USERNAME USED_UBLK LOGON_TIME TRANSACTION_DATE
---------- ---------- --------------- --------------- ---------- ------------------------- -------------------------
254 17710 oracle PART 1542 28-MAR-2018 13:03:53 28-MAR-2018 13:05:18
1 row selected.
We can see that the UNDO usage is rising as expected. I then performed the ALTER statement detailed above and monitored the UNDO usage. Here's what I saw
SYS@LUKEPDB1(LUKE) SQL> @trans
SID SERIAL# OSUSER USERNAME USED_UBLK LOGON_TIME TRANSACTION_DATE
---------- ---------- --------------- --------------- ---------- ------------------------- -------------------------
254 17710 oracle PART 1244 28-MAR-2018 13:03:53 28-MAR-2018 13:05:18
1 row selected.
SYS@LUKEPDB1(LUKE) SQL> /
SID SERIAL# OSUSER USERNAME USED_UBLK LOGON_TIME TRANSACTION_DATE
---------- ---------- --------------- --------------- ---------- ------------------------- -------------------------
254 17710 oracle PART 99 28-MAR-2018 13:03:53 28-MAR-2018 13:05:18
1 row selected.
SYS@LUKEPDB1(LUKE) SQL> /
SID SERIAL# OSUSER USERNAME USED_UBLK LOGON_TIME TRANSACTION_DATE
---------- ---------- --------------- --------------- ---------- ------------------------- -------------------------
254 17710 oracle PART 37 28-MAR-2018 13:03:53 28-MAR-2018 13:05:18
1 row selected.
SYS@LUKEPDB1(LUKE) SQL> /
SID SERIAL# OSUSER USERNAME USED_UBLK LOGON_TIME TRANSACTION_DATE
---------- ---------- --------------- --------------- ---------- ------------------------- -------------------------
254 17710 oracle PART 99 28-MAR-2018 13:03:53 28-MAR-2018 13:06:34
1 row selected.
SYS@LUKEPDB1(LUKE) SQL> /
SID SERIAL# OSUSER USERNAME USED_UBLK LOGON_TIME TRANSACTION_DATE
---------- ---------- --------------- --------------- ---------- ------------------------- -------------------------
254 17710 oracle PART 230 28-MAR-2018 13:03:53 28-MAR-2018 13:06:34
1 row selected.
We see the USED_UBLK reduce and then rise again showing us that the UNDO was being used during a rollback before the statement began again using UNDO. Once again I had traced this session and here are the results from tkprof
INSERT INTO output_main_archive SELECT * FROM output_main
call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.01 0.01 0 0 0 0
Execute 1 76.44 168.62 23859 497949 2153572 400000
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 2 76.46 168.63 23859 497949 2153572 400000
We can see that the elapsed time was significantly larger rising from 113.82s to 168.63s. Here are the main differences in the CPU and wait events
1st Run 2nd Run
Component Total Duration [s] Total Duration [s]
CPU 23.983 76.301
free buffer waits 44.404 48.304
db file sequential read 5.934 21.437
recursive statements 4.230 8.176
And the largest difference, using the output from orasrp, is that the 15 recursive statements increased to 922 statements (146 of these are unique) for the interrupted INSERT statement. One other thing, also shown using the orasrp tool, was that the UNDO data file is being used, as the read time and number of reads on the file ID (in my case it was file ID 10) had increased by a factor of 10.
Session Read Datafiles Statistics
1st Run 2nd Run
Datafile # Seconds Calls Seconds Calls
11 7.0077s 6,091 22.6365s 7,730
9 0.0469s 122 0.1172s 123
10 0.0007s 46 1.7878s 484
8 0.0002s 9 0.1110s 49
So just some evidence that Oracle handles some situations for us and instead of either hanging the DDL or failing the INSERT, both statements complete successfully, admittedly after using a lot more resources than first anticipated.
Share this
- Technical Track (967)
- Oracle (410)
- MySQL (140)
- Cloud (128)
- Microsoft SQL Server (117)
- Open Source (90)
- Google Cloud (81)
- Microsoft Azure (63)
- Amazon Web Services (AWS) (58)
- Big Data (52)
- Google Cloud Platform (46)
- Cassandra (44)
- DevOps (41)
- Pythian (33)
- Linux (30)
- Database (26)
- Performance (25)
- Podcasts (25)
- Site Reliability Engineering (25)
- PostgreSQL (24)
- Oracle E-Business Suite (23)
- Oracle Database (22)
- Docker (21)
- DBA (20)
- Security (20)
- Exadata (18)
- MongoDB (18)
- Oracle Cloud Infrastructure (OCI) (18)
- Oracle Exadata (18)
- Automation (17)
- Hadoop (16)
- Oracleebs (16)
- Amazon RDS (15)
- Ansible (15)
- Snowflake (15)
- ASM (13)
- Artificial Intelligence (AI) (13)
- BigQuery (13)
- Replication (13)
- Advanced Analytics (12)
- Data (12)
- GenAI (12)
- Kubernetes (12)
- LLM (12)
- Authentication, SSO and MFA (11)
- Cloud Migration (11)
- Machine Learning (11)
- Rman (11)
- Datascape Podcast (10)
- Monitoring (10)
- Apache Cassandra (9)
- ChatGPT (9)
- Data Guard (9)
- Infrastructure (9)
- Oracle Applications (9)
- Python (9)
- Series (9)
- AWR (8)
- High Availability (8)
- Oracle EBS (8)
- Oracle Enterprise Manager (OEM) (8)
- Percona (8)
- Apache Beam (7)
- Data Governance (7)
- Innodb (7)
- Microsoft Azure SQL Database (7)
- Migration (7)
- Myrocks (7)
- Performance Tuning (7)
- Data Enablement (6)
- Data Visualization (6)
- Database Performance (6)
- Oracle Enterprise Manager (6)
- Orchestrator (6)
- RocksDB (6)
- Serverless (6)
- Azure Data Factory (5)
- Azure Synapse Analytics (5)
- Covid-19 (5)
- Disaster Recovery (5)
- Generative AI (5)
- Google BigQuery (5)
- Mariadb (5)
- Microsoft (5)
- Scala (5)
- Windows (5)
- Xtrabackup (5)
- Airflow (4)
- Analytics (4)
- Apex (4)
- Cloud Security (4)
- Cloud Spanner (4)
- CockroachDB (4)
- Data Management (4)
- Data Pipeline (4)
- Data Security (4)
- Data Strategy (4)
- Database Administrator (4)
- Database Management (4)
- Database Migration (4)
- Dataflow (4)
- Fusion Middleware (4)
- Google (4)
- Oracle Autonomous Database (Adb) (4)
- Oracle Cloud (4)
- Prometheus (4)
- Redhat (4)
- Slob (4)
- Ssl (4)
- Terraform (4)
- Amazon Relational Database Service (Rds) (3)
- Apache Kafka (3)
- Apexexport (3)
- Aurora (3)
- Business Intelligence (3)
- Cloud Armor (3)
- Cloud Database (3)
- Cloud FinOps (3)
- Cosmos Db (3)
- Data Analytics (3)
- Data Integration (3)
- Database Monitoring (3)
- Database Troubleshooting (3)
- Database Upgrade (3)
- Databases (3)
- Dataops (3)
- Digital Transformation (3)
- ERP (3)
- Google Chrome (3)
- Google Cloud Sql (3)
- Google Workspace (3)
- Graphite (3)
- Heterogeneous Database Migration (3)
- Liquibase (3)
- Oracle Data Guard (3)
- Oracle Live Sql (3)
- Oracle Rac (3)
- Perl (3)
- Rdbms (3)
- Remote Teams (3)
- S3 (3)
- SAP (3)
- Tensorflow (3)
- Adf (2)
- Adop (2)
- Amazon Data Migration Service (2)
- Amazon Ec2 (2)
- Amazon S3 (2)
- Apache Flink (2)
- Ashdump (2)
- Atp (2)
- Autonomous (2)
- Awr Data Mining (2)
- Cloud Cost Optimization (2)
- Cloud Data Fusion (2)
- Cloud Hosting (2)
- Cloud Infrastructure (2)
- Cloud Shell (2)
- Cloud Sql (2)
- Conferences (2)
- Cosmosdb (2)
- Cost Management (2)
- Cyber Security (2)
- Data Analysis (2)
- Data Discovery (2)
- Data Engineering (2)
- Data Migration (2)
- Data Modeling (2)
- Data Quality (2)
- Data Streaming (2)
- Data Warehouse (2)
- Database Consulting (2)
- Database Migrations (2)
- Dataguard (2)
- Docker-Composer (2)
- Enterprise Data Platform (EDP) (2)
- Etl (2)
- Events (2)
- Gemini (2)
- Health Check (2)
- Infrastructure As Code (2)
- Innodb Cluster (2)
- Innodb File Structure (2)
- Innodb Group Replication (2)
- NLP (2)
- Neo4J (2)
- Nosql (2)
- Open Source Database (2)
- Oracle Datase (2)
- Oracle Extended Manager (Oem) (2)
- Oracle Flashback (2)
- Oracle Forms (2)
- Oracle Installation (2)
- Oracle Io Testing (2)
- Podcast (2)
- Power Bi (2)
- Redshift (2)
- Remote DBA (2)
- Remote Sre (2)
- SAP HANA Cloud (2)
- Single Sign-On (2)
- Webinars (2)
- X5 (2)
- Actifio (1)
- Adf Custom Email (1)
- Adrci (1)
- Advanced Data Services (1)
- Afd (1)
- Ahf (1)
- Alloydb (1)
- Amazon (1)
- Amazon Athena (1)
- Amazon Aurora Backtrack (1)
- Amazon Efs (1)
- Amazon Redshift (1)
- Amazon Sagemaker (1)
- Amazon Vpc Flow Logs (1)
- Analysis (1)
- Analytical Models (1)
- Anisble (1)
- Anthos (1)
- Apache (1)
- Apache Nifi (1)
- Apache Spark (1)
- Application Migration (1)
- Ash (1)
- Asmlib (1)
- Atlas CLI (1)
- Awr Mining (1)
- Aws Lake Formation (1)
- Azure Data Lake (1)
- Azure Data Lake Analytics (1)
- Azure Data Lake Store (1)
- Azure Data Migration Service (1)
- Azure OpenAI (1)
- Azure Sql Data Warehouse (1)
- Batches In Cassandra (1)
- Business Insights (1)
- Chown (1)
- Chrome Security (1)
- Cloud Browser (1)
- Cloud Build (1)
- Cloud Consulting (1)
- Cloud Data Warehouse (1)
- Cloud Database Management (1)
- Cloud Dataproc (1)
- Cloud Foundry (1)
- Cloud Manager (1)
- Cloud Networking (1)
- Cloud SQL Replica (1)
- Cloud Scheduler (1)
- Cloud Services (1)
- Cloud Strategies (1)
- Compliance (1)
- Conversational AI (1)
- DAX (1)
- Data Analytics Platform (1)
- Data Box (1)
- Data Classification (1)
- Data Cleansing (1)
- Data Encryption (1)
- Data Estate (1)
- Data Flow Management (1)
- Data Insights (1)
- Data Integrity (1)
- Data Lake (1)
- Data Leader (1)
- Data Lifecycle Management (1)
- Data Lineage (1)
- Data Masking (1)
- Data Mesh (1)
- Data Migration Assistant (1)
- Data Migration Service (1)
- Data Mining (1)
- Data Monetization (1)
- Data Policy (1)
- Data Profiling (1)
- Data Protection (1)
- Data Retention (1)
- Data Safe (1)
- Data Sheets (1)
- Data Summit (1)
- Data Vault (1)
- Data Warehouse Modernization (1)
- Database Auditing (1)
- Database Consultant (1)
- Database Link (1)
- Database Modernization (1)
- Database Provisioning (1)
- Database Provisioning Failed (1)
- Database Replication (1)
- Database Scaling (1)
- Database Schemas (1)
- Database Security (1)
- Databricks (1)
- Datascape 59 (1)
- DeepSeek (1)
- Duet AI (1)
- Edp (1)
- Gcp Compute (1)
- Gcp-Spanner (1)
- Global Analytics (1)
- Google Analytics (1)
- Google Cloud Architecture Framework (1)
- Google Cloud Data Services (1)
- Google Cloud Partner (1)
- Google Cloud Spanner (1)
- Google Cloud VMware Engine (1)
- Google Compute Engine (1)
- Google Dataflow (1)
- Google Datalab (1)
- Google Grab And Go (1)
- Graph Algorithms (1)
- Graph Databases (1)
- Graph Inferences (1)
- Graph Theory (1)
- GraphQL (1)
- Healthcheck (1)
- Information (1)
- Infrastructure As A Code (1)
- Innobackupex (1)
- Innodb Concurrency (1)
- Innodb Flush Method (1)
- It Industry (1)
- Kubeflow (1)
- LMSYS Chatbot Arena (1)
- Linux Host Monitoring (1)
- Linux Storage Appliance (1)
- Looker (1)
- MMLU (1)
- Managed Services (1)
- Migrate (1)
- Migrating Ssis Catalog (1)
- Migration Checklist (1)
- MongoDB Atlas (1)
- MongoDB Compass (1)
- Newsroom (1)
- Nifi (1)
- OPEX (1)
- ORAPKI (1)
- Odbcs (1)
- Odbs (1)
- On-Premises (1)
- Ora-01852 (1)
- Ora-7445 (1)
- Oracle Cursor (1)
- Oracle Database Appliance (1)
- Oracle Database Se2 (1)
- Oracle Database Standard Edition 2 (1)
- Oracle Database Upgrade (1)
- Oracle Database@Google Cloud (1)
- Oracle Exadata Smart Scan (1)
- Oracle Licensing (1)
- Oracle Linux Virtualization Manager (1)
- Oracle Oda (1)
- Oracle Openworld (1)
- Oracle Parallelism (1)
- Oracle RMAN (1)
- Oracle Rdbms (1)
- Oracle Real Application Clusters (1)
- Oracle Reports (1)
- Oracle Security (1)
- Oracle Wallet (1)
- Perfomrance (1)
- Performance Schema (1)
- Policy (1)
- Prompt Engineering (1)
- Public Cloud (1)
- Pythian News (1)
- Rdb (1)
- Replication Compatibility (1)
- Replication Error (1)
- Retail (1)
- Scaling Ir (1)
- Securing Sql Server (1)
- Security Compliance (1)
- Serverless Computing (1)
- Sso (1)
- Tenserflow (1)
- Teradata (1)
- Vertex AI (1)
- Vertica (1)
- Videos (1)
- Workspace Security (1)
- Xbstream (1)
- May 2025 (1)
- March 2025 (2)
- February 2025 (1)
- January 2025 (2)
- December 2024 (1)
- October 2024 (2)
- September 2024 (7)
- August 2024 (4)
- July 2024 (2)
- June 2024 (6)
- May 2024 (3)
- April 2024 (2)
- February 2024 (1)
- January 2024 (11)
- December 2023 (10)
- November 2023 (11)
- October 2023 (10)
- September 2023 (8)
- August 2023 (6)
- July 2023 (2)
- June 2023 (13)
- May 2023 (4)
- April 2023 (6)
- March 2023 (10)
- February 2023 (6)
- January 2023 (5)
- December 2022 (10)
- November 2022 (10)
- October 2022 (10)
- September 2022 (13)
- August 2022 (16)
- July 2022 (12)
- June 2022 (13)
- May 2022 (11)
- April 2022 (4)
- March 2022 (5)
- February 2022 (4)
- January 2022 (14)
- December 2021 (16)
- November 2021 (11)
- October 2021 (6)
- September 2021 (11)
- August 2021 (6)
- July 2021 (9)
- June 2021 (4)
- May 2021 (8)
- April 2021 (16)
- March 2021 (16)
- February 2021 (6)
- January 2021 (12)
- December 2020 (12)
- November 2020 (17)
- October 2020 (11)
- September 2020 (10)
- August 2020 (11)
- July 2020 (13)
- June 2020 (6)
- May 2020 (9)
- April 2020 (18)
- March 2020 (21)
- February 2020 (13)
- January 2020 (15)
- December 2019 (10)
- November 2019 (11)
- October 2019 (12)
- September 2019 (16)
- August 2019 (15)
- July 2019 (10)
- June 2019 (16)
- May 2019 (20)
- April 2019 (21)
- March 2019 (14)
- February 2019 (18)
- January 2019 (18)
- December 2018 (5)
- November 2018 (16)
- October 2018 (12)
- September 2018 (20)
- August 2018 (27)
- July 2018 (31)
- June 2018 (34)
- May 2018 (28)
- April 2018 (27)
- March 2018 (17)
- February 2018 (8)
- January 2018 (20)
- December 2017 (14)
- November 2017 (4)
- October 2017 (1)
- September 2017 (3)
- August 2017 (5)
- July 2017 (4)
- June 2017 (2)
- May 2017 (7)
- April 2017 (7)
- March 2017 (8)
- February 2017 (8)
- January 2017 (5)
- December 2016 (3)
- November 2016 (4)
- October 2016 (8)
- September 2016 (9)
- August 2016 (10)
- July 2016 (9)
- June 2016 (8)
- May 2016 (13)
- April 2016 (16)
- March 2016 (13)
- February 2016 (11)
- January 2016 (6)
- December 2015 (11)
- November 2015 (11)
- October 2015 (5)
- September 2015 (16)
- August 2015 (4)
- July 2015 (1)
- June 2015 (3)
- May 2015 (6)
- April 2015 (5)
- March 2015 (5)
- February 2015 (4)
- January 2015 (3)
- December 2014 (7)
- October 2014 (4)
- September 2014 (6)
- August 2014 (6)
- July 2014 (16)
- June 2014 (7)
- May 2014 (6)
- April 2014 (5)
- March 2014 (4)
- February 2014 (10)
- January 2014 (6)
- December 2013 (8)
- November 2013 (12)
- October 2013 (9)
- September 2013 (6)
- August 2013 (7)
- July 2013 (9)
- June 2013 (7)
- May 2013 (7)
- April 2013 (4)
- March 2013 (7)
- February 2013 (4)
- January 2013 (4)
- December 2012 (6)
- November 2012 (8)
- October 2012 (9)
- September 2012 (3)
- August 2012 (5)
- July 2012 (5)
- June 2012 (7)
- May 2012 (11)
- April 2012 (1)
- March 2012 (8)
- February 2012 (1)
- January 2012 (6)
- December 2011 (8)
- November 2011 (5)
- October 2011 (9)
- September 2011 (6)
- August 2011 (4)
- July 2011 (1)
- June 2011 (1)
- May 2011 (5)
- April 2011 (2)
- February 2011 (2)
- January 2011 (2)
- December 2010 (1)
- November 2010 (7)
- October 2010 (3)
- September 2010 (8)
- August 2010 (2)
- July 2010 (4)
- June 2010 (7)
- May 2010 (2)
- April 2010 (1)
- March 2010 (3)
- February 2010 (3)
- January 2010 (2)
- November 2009 (6)
- October 2009 (6)
- August 2009 (3)
- July 2009 (3)
- June 2009 (3)
- May 2009 (2)
- April 2009 (8)
- March 2009 (6)
- February 2009 (4)
- January 2009 (3)
- November 2008 (3)
- October 2008 (7)
- September 2008 (6)
- August 2008 (9)
- July 2008 (9)
- June 2008 (9)
- May 2008 (9)
- April 2008 (8)
- March 2008 (4)
- February 2008 (3)
- January 2008 (3)
- December 2007 (2)
- November 2007 (7)
- October 2007 (1)
- August 2007 (4)
- July 2007 (3)
- June 2007 (8)
- May 2007 (4)
- April 2007 (2)
- March 2007 (2)
- February 2007 (5)
- January 2007 (8)
- December 2006 (1)
- November 2006 (3)
- October 2006 (4)
- September 2006 (3)
- July 2006 (1)
- May 2006 (2)
- April 2006 (1)
- July 2005 (1)
No Comments Yet
Let us know what you think